首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500热模拟实验机对Cu-0.90Cr-0.18Zr合金在变形温度为500~800℃、应变速率为0.01~1 s-1变形条件下进行热压缩变形实验,研究该合金的流变应力、本构方程及动态再结晶临界条件。结果表明:Cu-Cr-Zr合金的流变应力随变形温度的升高而降低,随应变速率的增加而增加,计算出该合金的热变形激活能为584.87 kJ/mol并构建本构方程;利用合金的lnθ-ε曲线出现拐点及-(lnθ)ε-ε曲线出现最小值来研究动态再结晶临界应变。  相似文献   

2.
采用Gleeble-1500热模拟压缩试验获得了高强硼钢在880~1000℃、0.01~10 s-1、最大变形55%条件下的真应力-真应变曲线,通过对试验数据的处理和分析,研究了高强硼钢在试验条件下的软化机制及动态再结晶临界条件。结果表明:利用真应力-真应变曲线来判断高强硼钢的软化机制存在宏观判断误区,通过分析θ-σ曲线和晶粒金相可以发现,高强硼钢在本文变形条件下均可以发生动态再结晶;通过lnθ-ε曲线拐点及-(lnθ)/ε-ε曲线最小值判据可以确定高强硼钢动态再结晶临界应变,进而通过σ-ε曲线可以获得临界应力;随变形温度降低或应变速率提高,动态再结晶临界应力或应变值随之提高,且临界应力/应变与峰值应力/应变之间存在如下关系:σc=0.92σp,εc=0.57εp;临界应力/应变与变形条件的关系分别为:σc=17.4048ln Z-450.2409,εc=0.0195ln Z-0.4710。  相似文献   

3.
300M钢的热变形行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机在1123~1423 K、以0.01~10 s-1的应变速率,对300M钢进行了高温轴向压缩变形试验,并对不同变形条件下300M钢的金相组织进行了观察分析。结果表明:300M钢的高温流变曲线类型可分为动态回复型和动态再结晶型两种,随着变形温度的降低和变形速率的增加,300M钢的高温流变曲线逐渐由动态再结晶型向动态回复型转变。流变应力和峰值应变随变形温度的升高和应变速率的降低而减小;实验钢在真应变为1.2、应变速率为0.01~10 s-1的条件下,随变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10 s-1时,其变形温度高于1423 K,才会发生完全动态再结晶;测得300M钢的热变形激活能为391.51 kJ/mol,并建立了300M钢的热变形方程以及动态再结晶条件下峰值应变εp与Zener-Hollomon因子的定量关系。  相似文献   

4.
Q550D超低碳贝氏体钢动态再结晶行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机对Q550D超低碳贝氏体钢进行等温压缩变形试验,研究了该合金在变形温度为1000~1150℃、应变速率为0.01~0.1 s-1条件下的流变行为。通过应力-应变曲线研究了Q550D钢的动态再结晶规律,并采用硬化率-应变(θ-ε)曲线较精确地确定了动态再结晶的临界条件和峰值应力应变。利用Avrami方程和应力应变曲线建立Q550D钢动态再结晶动力学模型。并通过线性回归分析计算出Q550D超低碳贝氏体钢变形激活能Q,获得了Q550D超低碳贝氏体钢高温条件下的流变应力本构方程。  相似文献   

5.
在Gleeble-3800热模拟机上采用单道次压缩试验研究了SAE8620RH齿轮钢在变形温度为850~1100℃、应变速率为0.02~8 s~(-1)条件下的动态再结晶行为,基于应力-应变曲线计算出Zener-Hollomon参数,采用双曲正弦方程构建本构方程,并利用加工硬化率的方法处理流变应力数据。结果表明:SAE8620RH钢的高温变形激活能为295.274 kJ/mol;结合lnθ-ε曲线的拐点及dlnθ/dε-ε曲线的最小值判据,确定了SAE8620RH钢热塑性变形中动态再结晶发生的临界条件,并建立临界条件与温度补偿的应变速率因子Z之间的函数关系:ε_c=3.21×10~(-4)Z~(0.23687)。  相似文献   

6.
30%SiCp/2024Al复合材料动态再结晶临界条件   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机对30%SiCp/Al复合材料进行热模拟试验,其变形温度为623~773K、应变速率为0.01~10s-1。采用加工硬化率法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-(lnθ)/ε)-ε)曲线最小值的判据,研究了该复合材料动态再结晶临界条件。结果表明,30%SiCp/2024Al复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σp)随变形温度降低或应变速率升高而增加;该材料的lnθ-ε曲线出现拐点,(-(lnθ)/ε)-ε)曲线出现最小值;临界应变(εc)随变形温度升高与应变速率降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即εc=0.563εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为εc=7.96×10-3Z0.038。  相似文献   

7.
使用Gleeble-1500热模拟力学实验机研究了不同变形温度、应变速率对Z2CN131马氏体不锈钢流变应力的影响。结果表明:Z2CN131马氏体不锈钢在低的应变速率(0.01 s-1)、高的变形温度(1050、1150℃)时发生动态再结晶;在lnθ-ε曲线图出现的拐点,-坠lnθ/坠ε-ε曲线图上出现的极小值点,所对应的应变为动态再结晶的临界条件,由此可确定动态再结晶临界应变。基于Avrami方程建立了Z2CN131马氏体不锈钢的再结晶模型。  相似文献   

8.
TA15钛合金β区变形动态再结晶的临界条件   总被引:3,自引:0,他引:3  
采用Thermecmaster-Z热模拟试验机在变形温度1050~1100℃,应变速率10-3~1s-1的条件下进行热模拟压缩试验。采用加工硬化率处理方法对应力-应变数据进行处理,结合lnθ—ε曲线的拐点及-(lnθ)/ε—ε曲线最小值的判据,研究TA15钛合金β区变形时的动态再结晶临界条件。结果表明:在本实验条件下,TA15钛合金的lnθ—ε曲线均出现拐点及-(lnθ)/ε—ε曲线均出现最小值;临界应变随应变速率的增大及变形温度的降低而增加,且临界应变与峰值应变之间基本保持恒定值εc/εp=0.62;临界应变预测模型函数关系可以表示为εc=0.92×10-2Z0.0843。  相似文献   

9.
基于等温恒应变速率压缩实验,对300M钢在变形温度为850℃~1180℃、应变速率为0.01s-1~10s-1条件下的热变形行为,及其动态再结晶动力学行为进行研究。结果表明,当ln Z>33.37时,300M钢应力-应变曲线呈双峰不连续动态再结晶型,热变形过程发生两轮动态再结晶;当ln Z<33.37时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,热变形过程仅发生一轮动态再结晶。根据压缩实验结果,分别构建300M钢第一轮动态再结晶和第二轮动态再结晶的峰值应变、临界应变、平均晶粒尺寸和体积分数动力学模型。  相似文献   

10.
通过对挤压态42CrMo高强钢在不同温度和应变速率下的热压缩实验获得真应力-应变曲线,作为研究其高温动态再结晶行为的底层数据。基于d#/dε-#曲线,识别了真应力-应变曲线上能表征动态再结晶演变过程的特征点:临界应变εc,峰值应变εp及最大软化速率应变ε*。引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程。设计无量纲参数Z/A,对已修正的Avrami方程作线性回归分析,表征了不同变形条件对挤压态42CrMo钢动态再结晶体积分数演变的影响,并详细描述了动态结晶对应力软化的影响。结果表明:在高应变速率下,发生剧烈的软化后趋于稳定;在低应变速率条件下,出现硬化和软化的周期性循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号