首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500热模拟压缩试验获得了高强硼钢在880~1000℃、0.01~10 s-1、最大变形55%条件下的真应力-真应变曲线,通过对试验数据的处理和分析,研究了高强硼钢在试验条件下的软化机制及动态再结晶临界条件。结果表明:利用真应力-真应变曲线来判断高强硼钢的软化机制存在宏观判断误区,通过分析θ-σ曲线和晶粒金相可以发现,高强硼钢在本文变形条件下均可以发生动态再结晶;通过lnθ-ε曲线拐点及-(lnθ)/ε-ε曲线最小值判据可以确定高强硼钢动态再结晶临界应变,进而通过σ-ε曲线可以获得临界应力;随变形温度降低或应变速率提高,动态再结晶临界应力或应变值随之提高,且临界应力/应变与峰值应力/应变之间存在如下关系:σc=0.92σp,εc=0.57εp;临界应力/应变与变形条件的关系分别为:σc=17.4048ln Z-450.2409,εc=0.0195ln Z-0.4710。  相似文献   

2.
高性能桥梁钢A709M-HPS485wf动态再结晶临界条件的预测   总被引:1,自引:1,他引:1  
通过单道次等温热压缩实验,分别采用Najafizadeh-Jonas加工硬化率模型和Cingara-McQueen流变应力模型研究了高性能桥梁钢A709 M-HPS485wf在温度为1273~1423K,应变速率为0.1~3s-1)变形条件下的奥氏体动态再结晶临界条件,获得了动态再结晶的临界应力与峰值应力比(σc/σp)及临界应变与峰值应变比(εc/εp),且由线性回归方法建立了该钢动态再结晶临界应力(σc)及临界应变(εc)与变形参数之间的定量关系.  相似文献   

3.
45Cr4NiMoV合金动态再结晶临界应变   总被引:2,自引:0,他引:2  
采用Gleeble热模拟试验机对45Cr4Ni Mo V合金在变形温度为1000~1150℃,应变速率为0.002~5 s-1,最大变形量为55%的条件下进行热模拟压缩试验。通过对采集到的数据进行处理,结合lnθ-ε曲线的拐点及-(lnθ)/ε-ε曲线的极小值判据,建立了45Cr4Ni Mo V动态再结晶临界应变模型。结果表明,45Cr4Ni Mo V合金动态再结晶临界应变随变形温度递增以及应变速率递减而增加,临界应变εc与峰值应变εp之间满足:εc=0.42761εp,动态再结晶临界应变模型为:εc=0.000522Z0.15142。  相似文献   

4.
采用Gleeble-3800热模拟试验机对晶粒尺寸为200~250nm的复合细化超细晶纯锆在变形温度为300~450℃,应变速率为0.001~0.05 s-1的范围内进行单向热压缩实验。结果表明:热加工参数对超细晶纯锆流动应力影响很大。通过实验数据以及显微组织分析可知,在较高的变形温度和较低的应变速率下更容易发生动态再结晶;构建了超细晶纯锆的临界应变模型,得出其温度补偿应变速率因子Z与εc (临界应变),σc (临界应力),εp (峰值应变)和σp (峰值应力)间的关系;建立了超细晶纯锆动态再结晶体积分数模型,可以看出其动态再结晶发生的阶段为应变0.1~0.45。  相似文献   

5.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

6.
Mg-6Zn-1Mn镁合金的热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了Mg-6Zn-1Mn合金在变形温度250~450℃、应变速率0.001~10 s-1范围内的流变应力行为,采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系;并以热压缩试验为基础,建立并初步分析了Mg-6Zn-1Mn合金的DMM加工图。结果表明:Mg-6Zn-1Mn合金在热压缩过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与试验值较吻合;建立的加工图表明合金高温变形时存在2个失稳区域,而在温度325~425℃、应变速率0.01~0.365 s-1范围内出现1个非失稳区、功率耗散峰值区,该区域最适合Mg-6Zn-1Mn合金进行热加工。  相似文献   

7.
GH625合金的动态再结晶行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。  相似文献   

8.
在300~400℃、0.003~1 s-1变形条件下,采用Gleeble-1500型热模拟试验机对Mg-8Al-1Zn-1Y镁合金进行热压缩实验。依据加工硬化率曲线拐点特征构建了合金热变形过程中的动态再结晶临界应变模型,并根据临界条件构建了合金的动态再结晶动力学模型,并分析了不同变形条件对合金动态再结晶的影响。结果表明:变形温度和应变速率对Mg-8Al-1Zn-1Y镁合金的热变形行为有显著的影响,其流变曲线表现出典型的动态再结晶特征,并且提高变形温度和降低应变速率都将促进动态再结晶的发生;在本实验条件下,Mg-8Al-1Zn-1Y镁合金的加工硬化率曲线均具有拐点特征,得到了合金在变形温度为300~400℃及应变速率为0.003~1 s-1条件下所对应的临界应变εc和峰值应变εp,并获得了合金临界应变模型和动态再结晶动力学模型,合金显微组织特征验证了所获得的临界应变模型和动态再结晶模型的准确性。  相似文献   

9.
30%SiCp/2024Al复合材料动态再结晶临界条件   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机对30%SiCp/Al复合材料进行热模拟试验,其变形温度为623~773K、应变速率为0.01~10s-1。采用加工硬化率法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-(lnθ)/ε)-ε)曲线最小值的判据,研究了该复合材料动态再结晶临界条件。结果表明,30%SiCp/2024Al复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σp)随变形温度降低或应变速率升高而增加;该材料的lnθ-ε曲线出现拐点,(-(lnθ)/ε)-ε)曲线出现最小值;临界应变(εc)随变形温度升高与应变速率降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即εc=0.563εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为εc=7.96×10-3Z0.038。  相似文献   

10.
依据粉末冶金Ti-47Al-2Nb-2Cr合金热模拟压缩实验结果,研究了变形温度为950~1150 ℃、应变速率为0.001~0.1 s(-1)条件下材料的流变力学行为。采用Poliak和Jonas所提出的临界条件动力学理论,确定了该合金的动态再结晶临界应变(ε_c)和临界应力(σ_c),揭示了变形温度与应变速率对ε_c和σ_c的影响规律。结果表明,温度补偿应变速率因子Z与ε_c、σ_c、ε_p(峰值应变)和σ_p(峰值应力)间的关系可以采用指数函数形式表征。建立了该合金动态再结晶临界发生模型:ε_c=1.2×10~(-3)Z~(0.147),动态再结晶临界应变与流变应力曲线峰值应变的比值约为 0.73。根据对模型的分析表明,临界应变与 Z 参数之间呈现正相关性,即随着 Z 参数的减小(变形温度升高或应变速率降低),材料发生动态再结晶的临界应变减小,说明变形温度的升高与应变速率的下降能够促进动态再结晶行为的发生。通过对热变形后微观组织的观察,验证了所建立动态再结晶临界模型的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号