首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.  相似文献   

3.
Influences of matrix elements and high viscosity in three kind of simulated body fluids (SBFs) on determination of trace metallic elements (Co, Cr, Ni, Al and V) by inductively coupled plasma atomic emission spectrometry (ICP-AES) were investigated. In addition, decreases of these effects were attempted by H2SO4 fume treatment. Calibration lines of the elements were constructed by the standard solutions made of elemental solutions and HCl or the SBFs. Gradients of calibration lines constructed by the each standard solution were different. Therefore, for accurate determination, calibration curve must be constructed by the elemental standard solution and the analytical solution. Limit of detection (LOD) of each element in the solutions was measured by a blank test. Although LODs of μg ⋅ L−1 (ppb) order were nominal instrumental data, because of influences of the matrix elements and the high viscosity, the measured LODs of the elements in the SBFs were higher than those. However, the LODs were lowered by employing the H2SO4-fume treatment and approached to the nominal instrumental data. Therefore, H2SO4-fume treatment is extremely effective treatment in order to reduce the influences.  相似文献   

4.
Chen D  Huang C  He M  Hu B 《Journal of hazardous materials》2009,164(2-3):1146-1151
A simple and sensitive method using micro-column packed with 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) modified ordered mesoporous silica combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for the speciation of inorganic arsenic (As(III) and As(V)) has been developed. The adsorption behaviors of As(III) and As(V) on AAPTS modified ordered mesoporous silica were investigated. It was found that As(V) can be selectively adsorbed on the micro-column within pH of 3-9, while As(III) could not be retained in the studied pH range and passed through the micro-column directly. Total inorganic arsenic was extracted after the oxidation of As(III) to As(V) with 50.0 micromol L(-1) KMnO(4). The assay of As(III) was based on subtracting As(V) from total As. The effect of various parameters on the separation/preconcentration of As(III) and As(V) have been investigated and the optimal experimental conditions were established. The adsorption capacity of AAPTS modified ordered mesoporous silica for As(V) was found to be 10.3 mg g(-1). The detection limit of the method for As(V) was 0.05 microg L(-1) with an enrichment factor of 100, and the relative standard deviation (R.S.D.) was 5.7% (n=7, C=1.0 microg L(-1)). In order to validate the developed method, a certified reference material GSBZ50004-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the speciation analysis of inorganic arsenic in natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号