首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency quasi-resonant converter technologies   总被引:4,自引:0,他引:4  
Resonant switch topologies operating under the principle of zero-current switching (ZCS) and zero-voltage switching (ZVS) are introduced to minimize switching losses, stresses, and noises. Using the resonant switch concept, a host of new quasi-resonant converters (QRCs) are derived from conventional PWM converters. They are capable of operating in the megahertz range, with a significant improvement in performance and power density. Performances of ZCS and ZVS QRCs are compared. Power stages, gate drives, and feedback controls are discussed  相似文献   

2.
Multiresonant power converters (MRCs) and quasi-resonant power converters (QRCs) have been modified to provide constant-frequency operation. Transformer leakage inductance has been used to adapt the traditional pulse-width-modulation (PWM) control to these converters. Conventional PWM integrated circuits can be used for the power converter regulation. Several experimental results are developed to test the control method proposed  相似文献   

3.
Multi-loop control for quasi-resonant converters   总被引:2,自引:0,他引:2  
A multiloop control scheme for quasi-resonant converters (QRCs) is described. Like current-mode control for pulse width modulation (PWM) converters, this control offers excellent transient response and replaces the voltage-controlled oscillator (VCO) with a simple comparator. In this method, referred to as current-sense frequency modulation (CSFM), a signal proportional to the output-inductor current is compared with an error voltage signal to modulate the switching frequency. The control can be applied to either zero-voltage-switched (ZVS) or zero-current-switched (ZCS) QRCs. Computer simulation is method applied to a ZCS buck QRC. A circuit implementation is presented that allows multiloop control to be used on circuits switching up to 10 MHz. This circuit requires few components and produces clean control waveforms. Experimental results are presented for zero-current flyback and zero-voltage buck QRCs, operating at up to 7 MHz. Good small-signal characteristics have been obtained  相似文献   

4.
A novel resonant switch and a family of zero-current and zero-voltage mixed-mode switching quasi-resonant converters (QRCs) called single-cycle resonant converters (SCRCs) are proposed to improve the performance of the conventional QRCs. The SCRCs, which include two active switches operated with zero-current switching (ZCS) and zero-voltage switching (ZVS), respectively, show very simple operation and ease of control and analysis, and they overcome the limited load range characteristics of the conventional ZCS QRCs. The SCRCs can be applied even for a high-frequency AC chopper by replacing unidirectional switches with bidirectional ones. Steady-state operation and characteristics of the buck-type SCRCs are analyzed and compared with those of the buck-type full-wave QRC (FW-QRC). Experimental results at a a 200 kHz, 1 kW level are shown to verify the operational principle and characteristics  相似文献   

5.
In this paper, we propose to study the use of several zero-current-switched (ZCS) quasi-resonant converters (QRCs) (buck-boost, flyback, SEPIC, Cuk, boost, and buck) with a half-wave switch, working as power factor preregulators (PFPs) with voltage-follower control. The analysis carried out demonstrates that these converters show excellent characteristics to obtain a high power factor (PF) without using any input-current feedback loop, and they also allow high switching frequency to operate because they integrate transformer and rectifier diode parasitics into the power topology  相似文献   

6.
This paper proposes a new zero-current-switching (ZCS) pulsewidth modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero-current condition. The diodes commutate softly and the reverse-recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC-to-DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high-power applications employing insulated gate bipolar transistors. Among the new family of DC-to-DC PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype boost converter operating at 40 kHz  相似文献   

7.
Topological constraints are obtained for pulse width-modulation (PWM) (under both continuous and discontinuous current modes) and quasi-PWM (including families of quasi-resonant and quasi-square wave) converters by identifying their three structures. Switching sequences of these converters and a classification of quasi-PWM power converters are presented. A dual circuit of an ideal diode and an ideal switch are proposed and used to obtain duals of the switching converters in one step. A procedure for the synthesis of quasi-PWM converters is presented  相似文献   

8.
A new family of zero-current-switching (ZCS) pulsewidth-modulation (PWM) converters using a new ZCS-PWM auxiliary circuit is presented in this paper. The main switch and auxiliary switch operate at ZCS turn-on and turn-off, and the all-passive semiconductor devices in the ZCS-PWM converters operate at zero-voltage-switching (ZVS) turn-on and turn-off. Besides operating at constant frequency and reducing commutation losses, these new converters have no additional current stress and conduction loss in the main switch in comparison to the hard-switching converter counterpart. The PWM switch model and state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the system. The new family of ZCS-PWM converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The principle of operation, theoretical analysis, and experimental results of the new ZCS-PWM boost converter, rated 1.6 kW and operating at 30 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

9.
A new family of zero-current-switching (ZCS) pulsewidth-modulated (PWM) converters which uses a new ZCS-PWM switch cell is presented in this paper. The main switch and auxiliary switch operate at ZCS turn-on and turn-off, and all the passive semiconductor devices in the ZCS-PWM converter operate at zero-voltage-switching (ZVS) turn-on and turn-off. Besides operating at constant frequency and with reduced commutation losses, these new converters have no additional current stress in comparison to the hard-switching converter counterpart. The new family of ZCS-PWM converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The PWM switch model and state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the system. The principle of operation, theoretical analysis, and experimental results of the new ZCS-PWM boost converter, rated 1 kW and operating at 30 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

10.
Nonlinear modeling of the PWM switch   总被引:7,自引:0,他引:7  
The nonlinearity due to the switching action in pulse-width-modulated (PWM) DC-to-DC converters, DC-to-AC inverters, or amplifiers and input-current-shaping AC-to-DC converters can often conveniently be confined to three-terminal structure referred to as the PWM switch. The PWM switch represents a static nonlinearity for which circuit models can easily be derived for frequencies harmonically related to the frequency of perturbation. Converter analysis can thus be approached in a way analogous to ordinary transistor circuit analysis whereby the nonlinear three-terminal device is replaced by its circuit model. A first-order approximation of the model results in the small-signal model  相似文献   

11.
Novel zero-voltage-transition PWM converters   总被引:9,自引:0,他引:9  
To date, soft-switching techniques applied to the PWM converters, with the exception of a few isolated cases, are subjected to either high switch voltage stresses or high switch current stresses, or both. A new class of zero-voltage-transition PWM converters is proposed, where both the transistor and the rectifier operate with zero-voltage switching and are subjected to minimum voltage and current stresses. Breadboarded converters are constructed to verify the novelty of the proposed new family of converters  相似文献   

12.
A method for systematic synthesis of quasi-resonant (QR) topologies by addition of resonant elements to a parent pulse-width modulation (PWM) converter network is proposed. It is found that there are six QR classes with two resonant elements, including two novel classes. More complex QR converters can be generated by a recursive application of the synthesis method. Topological definitions of all known and novel QR classes follow directly from the synthesis method and topological properties of PWM parents. The synthesis of QR converters is augmented by a study of possible switch realizations and operating modes. In particular, it is demonstrated that a controllable rectifier can be used to accomplish the constant-frequency control in all QR classes. Links between the QR converters and the underlying PWM networks are extended to general DC and small-signal AC models in which the model of the PWM parent is explicitly exposed. Results of steady-state analyses of selected QR classes and operating modes include boundaries of operating regions, DC characteristics, a comparison of switching transitions and switch stresses, and a discussion of relevant design trade-offs  相似文献   

13.
The characteristics and limitations of the half-bridge zero-voltage-switched (ZVS) quasi-resonant converters (QRCs) are described. A novel multiresonant concept is proposed for the half-bridge topology to improve the ZVS QRC's load range. Experimental results for 300 V. 75 W zero-voltage-switched quasi-resonant and multiresonant converters operating in the frequency range from 2 MHz to 8 MHz are presented  相似文献   

14.
A systematic approach to developing soft switching PWM converters based on the synchronous switch scheme is presented in this paper. With the approach, several families of passive and active soft switching PWM converters, such as buck-boost, Zeta, Cuk, and Sepic, can be generated from the two basic converters, buck and boost. Also, the approach is used to integrate multiple converters to form a single-stage soft switching PWM converter. It has been shown that analysis of the converters can be conveniently performed from the derived general configurations, reducing the complexity significantly. Therefore, employing the technique can not only explore more physical insights into the converters in a family but reveal more relationships among the soft switching converters over conventional approaches. Measured results from a prototype have verified the feasibility of the derived single-stage converters  相似文献   

15.
A new family of zero-voltage-switching (ZVS) pulsewidth-modulated (PWM) converters that uses a new ZVS-PWM switch cell is presented in this paper. Except for the auxiliary switch, all active and passive semiconductor devices in the ZVS-PWM converters operate at ZVS turn ON and turn OFF. The auxiliary switch operates at zero-current-switching (ZCS) turns ON and OFF. Besides operating at constant frequency, these new converters have no overvoltage across the switches and no additional current stress on the main switch in comparison to the hard-switching converter counterpart. Auxiliary components rated at very small current are used. The principle of operation, theoretical analysis, and experimental results of the new ZVS-PWM boost converter, rated 1 kW, and operating at 80 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

16.
Asymmetric control scheme is an approach to achieve zero-voltage switching (ZVS) for half-bridge isolated dc-dc converters. However, it is not suited for wide range of input voltage due to the uneven voltage and current components stresses. This paper presents a novel "duty-cycle-shifted pulse-width modulated" (DCS PWM) control scheme for half-bridge isolated dc-dc converters to achieve ZVS operation for one of the two switches without causing the asymmetric penalties in the asymmetric control and without adding additional components. Based on the DCS PWM control scheme, an active-clamp branch comprising an auxiliary switch and a diode is added across the isolation transformer primary winding in the half-bridge converter to achieve ZVS for the other main switch by utilizing energy stored in the transformer leakage inductance. Moreover, the auxiliary switch also operates at ZVS and zero-current switching (ZCS) conditions. Furthermore, during the off-time period, the ringing resulted from the oscillation between the transformer leakage inductance and the junction capacitance of two switches is eliminated owing to the active-clamp branch and DCS PWM control scheme. Hence, switching losses and leakage-inductance-related losses are significantly reduced, which provides the converter with the potential to operate at higher efficiencies and higher switching frequencies. The principle of operation and key features of the proposed DCS PWM control scheme and two ZVS half-bridge topologies are illustrated and experimentally verified.  相似文献   

17.
A reduced-order (RO) small-signal model of three-phase pulse-width-modulation (PWM) rectifiers is proposed. By combining the PWM switch model and equivalent multimodule model techniques in DC-DC converters, a three-phase rectifier can be modeled as a DC-DC converter with equivalent power capability and small-signal characteristics. This model reduces the system order to two and greatly simplifies the control design and system analysis of three-phase converters. In this paper, the proposed model is also used for control design and for system interaction analysis on the three-phase interface of a boost rectifier. The RO model is verified with the d-q model, switching-model simulation, and experimental results  相似文献   

18.
Novel ZVT-PWM converters with active snubbers   总被引:6,自引:0,他引:6  
An active snubber cell is proposed to contrive zero-voltage-transition (ZVT) pulsewidth-modulated (ZVT-PWM) converters. Except for the auxiliary switch, all active and passive semiconductor devices in a ZVT-PWM converter operate at zero-voltage-switching (ZVS) turn on and turn off. The auxiliary switch operates at ZVS turn off and near zero current-switching (ZCS) turn on. An analytical study on a boost ZVT-PWM converter with the proposed active snubber cell is presented in detail. A 750 W 80 kHz prototype of the boost ZVT-PWM converter has been built in the laboratory to experimentally verify the analysis. Six basic ZVT-PWM converters can be easily created by attaching the proposed active snubber cells to conventional PWM converters. A detailed design procedure of the proposed active snubber cell is also presented in this paper  相似文献   

19.
A zero-voltage-switched (ZVS) pulsewidth-modulated (PWM) boost converter with an energy feedforward auxiliary circuit is proposed in this paper. The auxiliary circuit, which is a resonant circuit consisting of a switch and passive components, ensures that the converter's main switch and boost diode operate with soft switching. This converter can function with PWM control because the auxiliary resonant circuit operates for a small fraction of the switching cycle. Since the auxiliary circuit is a resonant circuit, the auxiliary switch itself has both a soft turn on and turn off, resulting in reduced switching losses and electromagnetic interference (EMI). This is unlike other proposed ZVS boost converters with auxiliary circuits where the auxiliary switch has a hard turn off. Peak switch stresses are only slightly higher than those found in a conventional PWM boost converter because part of the energy that would otherwise circulate in the auxiliary circuit and drastically increase peak switch stresses is fed to the load. In this paper, the operation of the converter is explained and analyzed, design guidelines are given, and experimental results obtained from a prototype are presented. The proposed converter is found to be about 2%-3% more efficient than the conventional PWM boost converter  相似文献   

20.
This paper proposes the analysis and design methodology of lossless, passive soft switching methods for PWM converters. The emphasis of the design and analysis is for PWM converters that use nonminimum voltage stress (non-MVS) circuit cells to provide soft switching. PWM converters with non-MVS circuit cells have several distinct advantages over converters that use minimum voltage stress (MVS) cells. With the same relative size of the inductor and capacitor added for soft switching, the non-MVS cells have a substantially larger duty ratio range where soft switching is guaranteed. In addition, the overcurrent stress of the main switch, under most conditions, will be lower and an optimum value of inductor and capacitor added for soft switching can be used. Therefore, with proper design, the non-MVS cells provide higher efficiency. These advantages are obtained with the price of higher switching voltage stress and one additional inductor. The loss model for a MOSFET and optimum capacitor and inductor values are utilized in the design procedure. Examples of the design procedure are given for PFC and DC-DC applications. Experimental results backup the claim of higher efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号