首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV–vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 °C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV–vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region.  相似文献   

2.
In this work, we report on the synthesis of SrMoO4powders by co-precipitation method and processed in a microwave-hydrothermal at 413 K for 5 h. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL). XRD analyses revealed that the SrMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. FT-Raman investigations showed the presence of Raman-active vibration modes correspondent for this molybdate. UV–vis technique was employed to determine the optical band gap of this material. SrMoO4 powders exhibit an intense PL emission at room temperature with maximum peak at 540 nm (green region) when excited by 488 nm wavelength of an argon ion laser.  相似文献   

3.
Pure TiO2 anatase particles with a crystallite diameters ranging from 4.5 to 29 nm were prepared by precipitation and sol–gel method, characterized by X-ray diffraction (XRD), BET surface area measurement, UV–vis and scanning electron microscopy (SEM) and tested in CO2 photocatalytic reduction. Methane and methanol were the main reduction products. The optimum particle size corresponding to the highest yields of both products was 14 nm. The observed optimum particle size is a result of competing effects of specific surface area, charge–carrier dynamics and light absorption efficiency.  相似文献   

4.
Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (−0.1, −0.3, −0.5, −0.7, and −0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV–vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.  相似文献   

5.
C-, S-, N-, and Fe-doped TiO2 photocatalysts were synthesized by a facile sol–gel method. The structure and properties of catalysts were characterized by N2 desorption–adsorption, X-ray diffraction (XRD), UV–vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results revealed that the surface area of the multi-doped TiO2 was significantly increased and the crystallite size was smaller than the pure TiO2 obtained by a similar route. Compared with TiO2, the peak position in doped-TiO2 XRD patterns was slightly shifted, which could be attributed to the distortion by the substitution of carbon, nitrogen, and sulfur dopants for some oxygen atoms and Fe3+ for Ti4+ in the lattice of TiO2. These substitutions were confirmed by XPS. In addition, these dopants were responsible for narrowing the band gap of TiO2 and shifting its optical response from ultraviolet (UV) to the visible-light region. The photocatalytic reactivities of these multi-doped TiO2 catalysts were investigated by degrading Rhodamine B (RB) in aqueous solution under visible-light irradiation (λ > 420 nm). It was found out that the reactivity was significantly enhanced and the catalyst doped with nitrogen, carbon, sulfur, and 0.3 wt% iron had the highest photocatalytic activity.  相似文献   

6.
Magnesium hydroxide (Mg(OH)2) micro- and nanostructures have been synthesized by a single step hydrothermal route. Surface morphology analysis reveals the formation of micro- and nanostructures with varying shape and size at different synthesis conditions. Structural investigations by X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirm that the synthesized material is Mg(OH)2 with hexagonal crystal structure. An optical band gap of 5.7 eV is determined for Mg(OH)2 nanodisks from the UV–vis absorption spectrum. A broad emission band with maximum intensity at around 400 nm is observed in the photoluminescence (PL) spectra of Mg(OH)2 nanodisks at room temperature depicting the violet emission, which can be attributed to the ionized oxygen vacancies in the material. Furthermore, Mg(OH)2 has been converted to MgO by calcination at 450 °C. Optical studies of the MgO nanodisks have shown an optical band gap of 3.43 eV and a broadband PL emission in the UV region. Mg(OH)2 and MgO nanostructures with wide-band gap and short-wavelength luminescence emission can serve as a better luminescent material for photonic applications.  相似文献   

7.
Flower-like Bi2MoO6 crystallites were successfully synthesized by the microwave hydrothermal process using Bi(NO3)3·5H2O and Na2MoO4·2H2O as source materials and adding hexamethylene tetramine (HMT) as a template. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to characterize the products. Ultraviolet–visible (UV–vis) spectroscopy was employed to study the optical properties of Bi2MoO6. Results show that the product morphology is flower-like on adding the template. These flower-like Bi2MoO6 crystallites are a self-assembly of many thin nanoplates. HMT plays an important role in the formation of the flower-like morphology. UV–vis absorption spectra of all the Bi2MoO6 samples show strong photoabsorption properties from the ultraviolet region to the visible-light region with wavelength shorter than 500 nm. The band gap of flower-like Bi2MoO6 crystallites displays a slight red-shift compared with the Bi2MoO6 plate-like structures.  相似文献   

8.
A series of S-doped TiO2 with visible-light photocatalytic activity were prepared by a simple hydrolysis method using titanium tetrachloride (TiCl4) and sodium sulfate (Na2SO4) as precursors. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectrophotometer (UV–Vis DRS), and X-ray photoelectron spectroscopy (XPS). With the doping of S, photocatalysts with small crystal size, high content of anatase phase were obtained. The result showed that S-doped TiO2 demonstrate considerably high photoactivity under low power visible LED light irradiation, while undoped TiO2 and the Degussa P25 have nearly no activity at all. The possible mechanism of S-doped for the visible-light activity was discussed.  相似文献   

9.
In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2 nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission).  相似文献   

10.
Nanosized cerium dioxide (CeO2) powders have been synthesized using coprecipitation methods and cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as the starting material. The growth and optical properties of nanosized CeO2 powders were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano-beam electron diffraction (NBED), high resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) absorption spectrophotometry. The XRD result shows that the dried CeO2 precursor powders (both before and after calcination at various temperatures and times) contained a single crystalline phase of CeO2. In the dried precursor powders, the crystallites of CeO2 measured 10.4 nm and 66.8 nm before and after calcination at 1273 K for 240 min, respectively. The indirect band gap energy (EiEi) of CeO2 decreased from 3.03 eV to 2.68 eV as the crystallite size increased from 10.4 nm to 66.8 nm, whereas the direct band gap energy (EdEd) of CeO2 also decreased from 3.79 eV to 3.38 eV.  相似文献   

11.
Mesoporous Sn-SBA-15 has been synthesized by three different methods such as conventional hydrothermal route, using cocatalyst NH4F and in the presence of organosilane precursor. All the materials are thoroughly characterized by powder X-ray diffraction (XRD), SEM, TEM, N2 sorption and surface area measurements, diffuse-reflectance UV–visible and FTIR spectroscopy, TG–DTA and elemental analysis through ICP. Nitrogen adsorption data, XRD patterns, and TEM observations suggests that the textural properties are retained during the isomorphous substitution of silicon by tin. ICP chemical analysis indicates that tin can be substituted in the range of Si/Sn = 69–162. UV–visible spectra of samples synthesized by the cocatalytic approach exhibit unique absorption band at 213 nm characteristics of tin atom substituted in the smaller pores (2–3 nm) located inside the walls of mesopores. Further, an additional band at 224 nm can be assigned to Sn atoms located in the distorted tetrahedral position along the primary mesopores. In contrary, only one absorption band centered at 224 nm is observed for all the samples synthesized by conventional hydrothermal as well as in the presence of organosilane precursor. 19F NMR spectra confirmed (no signal) the absence of occluded F ions in the samples made with NH4F. Observed high catalytic activity in Baeyer–Villiger oxidation and Meerwin–Pondorf–Verly reduction under the liquid-phase conditions suggest the incorporation of a portion of tin in the smaller pores for the Sn-SBA-15 materials synthesized through cocatalyst method.  相似文献   

12.
A series of TiO2 photocatalysts were obtained using several calcination temperatures ranging from 350 to 750 °C. The photocatalysts’ characteristics by X-ray diffraction, UV–vis and FTIR diffuse reflectance spectroscopies, X-ray photoelectron spectroscopy, BET and BJH methods showed that sample active in vis region had anatase structure, about 200 m2/g specific surface area, absorbed light for λ > 400 nm and contained 10.1 at.% of C–C species. The photocatalytic activity of the catalysts was estimated by measuring the decomposition rate of phenol in 0.21 mM aqueous solution in visible and ultraviolet light. The experimental data clearly indicate correlation between the absorption intensity of irradiation by obtained powders and their photocatalytic performance in phenol degradation. An increase in absorbance over the entire vis region and the highest photocatalytic activity for phenol degradation in visible light (λ > 400 nm) occurred for photocatalyst calcinated at 350 °C. Photocatalyst processed at 450 °C had the best activity in UV light (250 < λ < 400 nm).  相似文献   

13.
Fe-doped TiO2 (Fe-TiO2) nanorods were prepared by an impregnating-calcination method using the hydrothermally prepared titanate nanotubes as precursors and Fe(NO3)3 as dopant. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption–desorption isotherms and UV–vis spectroscopy. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air under visible-light irradiation. The results show that Fe-doping greatly enhance the visible-light photocatalytic activity of mesoporous TiO2 nanorods, and when the atomic ratio of Fe/Ti (RFe) is in the range of 0.1–1.0%, the photocatalytic activity of the samples is higher than that of Degussa P25 and pure TiO2 nanorods. At RFe = 0.5%, the photocatalytic activity of Fe-TiO2 nanorods exceeds that of Degussa P25 by a factor of more than two times. This is ascribed to the fact that the one-dimensional nanostructure can enhance the transfer and transport of charge carrier, the Fe-doping induces the shift of the absorption edge into the visible-light range with the narrowing of the band gap and reduces the recombination of photo-generated electrons and holes. Furthermore, the first-principle density functional theory (DFT) calculation further confirms the red shift of absorption edges and the narrowing of band gap of Fe-TiO2 nanorods.  相似文献   

14.
In this study, highly effective B-doped, Ni-doped and B–Ni-codoped TiO2 microspheres photocatalysts were directly synthesized via an aerosol-assisted flow synthesis method. The resulting samples were characterized by XRD, SEM, TEM, UV–vis diffuse reflectance spectroscopy, nitrogen adsorption and XPS. The characterizations revealed hollow microspherical structure of the B-doped and B–Ni-codoped TiO2 photocatalysts, while the Ni-doped and undoped TiO2 products consisted of solid microspheres. It was found that the boron dopant was partially embedded into the interstitial TiO2 structure, existing in the form of Ti–O–B structure. The band gap was enlarged after the boron doping. However, both Ni-doped and B–Ni-codoped TiO2 samples showed obvious red shift in their absorption edges because of the Ni doping. The photocatalytic activities of these samples were evaluated on the photocatalytic removal of NO under simulated solar light irradiation. All the aerosol-assisted flow synthesized samples had much higher photocatalytic activities than P25 and the doped TiO2 microspheres exhibited enhanced photocatalytic activity than the undoped counterparts. More interestingly, the B–Ni-codoped TiO2 photocatalyst possessed superior photocatalytic activity to the as-prepared single doped TiO2 products. The enhanced photocatalytic activity was explained and the formation mechanisms of hollow and solid microspheres were also proposed on the basis of characterizations. We think this general method may be easily scaled up for industrial production of highly active microspherical photocatalysts for efficient NO removal under simulated solar light irradiation.  相似文献   

15.
Bi2MO6 (M = W or Mo) have been successfully synthesized using the citrate complex method. The samples were characterized by X-ray diffraction, Brunauer–Emmet–Teller surface area and UV–vis spectroscopy. The solids crystallized in the orthorhombic Aurivillius-type structure and display optimum light absorption properties to be used as photocatalysts. The photoactivity power of the samples was investigated systematically using the rhodamine B degradation under different irradiation wavelengths. The behaviour of the solids and the photodegradation mechanism was studied as a function of the irradiation light (UV or visible) employed. Direct solar light was also employed as irradiation source showing that this type of structures could drive to a plausible strategy for developing finest photocatalyst to degrade wastewaters by using solar light.  相似文献   

16.
BiVO4 with a 2.3 eV band gap showed an activity for O2 evolution from aqueous solutions containing Ag+ as an electron scavenger under visible light irradiation (λ > 520 nm). The quantum yield was 0.5% at 450 nm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Titanium dioxide nanoparticles were modified by polyaniline (PANI) using ‘in situ’ chemical oxidative polymerization method in hydrochloric acid solutions. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectrum (XPS) and UV–vis spectra were carried out to characterize the composites with different PANI contents. The photocatalytic degradation of phenol was chosen as a model reaction to evaluate the photocatalytic activities of the modified catalysts. Results show that TiO2 nanoparticles are deposited by PANI to mitigate TiO2 particles agglomeration. The modification does not alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction patterns. UV–vis spectra reveal that PANI-modified TiO2 composites show stronger absorption than neat TiO2 under the whole range of visible light. The resulting PANI-modified TiO2 composites exhibit significantly higher photocatalytic activity than that of neat TiO2 on degradation of phenol aqueous solution under visible light irradiation (λ ≥ 400 nm). An optimum of the synergetic effect is found for an initial molar ratio of aniline to TiO2 equal to 1/100.  相似文献   

18.
Decahedral BiVO4 was successfully synthesized with Tween-80 as a template by the microwave hydrothermal method. The effects of hydrothermal temperature and Tween-80 on crystal phase and morphology of the obtained BiVO4 were investigated. The crystal phase and morphology were characterized by X-ray diffraction, field emission scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The results indicated that the as-prepared decahedral BiVO4 was monoclinic. The photocatalytic behavior for methylene blue (MB) degradation was enhanced with the assistance of an appropriate amount of hydrogen peroxide (H2O2) under visible light irradiation. The photocatalytic tests indicated that the photocatalytic efficiency of decahedral BiVO4 synthesized at 180 °C was 63.5%. However, BiVO4 sample synthesized at 160 °C showed the highest photocatalytic degradation rate, up to 81.6%, due to its small size and crystal defects.  相似文献   

19.
Zirconium oxide (ZrO2) nanostructures were synthesized by hydrothermal route. Surface morphology analysis depicts the formation of the nanobars and hexagonal-shaped nanodiscs at different synthesis conditions. The structural analysis confirms that the as-synthesized ZrO2 product is of pure monoclinic phase (m-ZrO2) with crystallite size of about 25 nm. The product consists of monodispersed nanoparticles of uniform composition, high purity, and crystallinity. The Raman spectra are quantitatively analyzed and the observed peaks are attributed to various vibration modes of the m-ZrO2. The UV–vis absorption spectrum showed a strong absorption peak at about 292 nm and the estimated optical band gap was around 3.57 eV. Photoluminescence (PL) spectrum of ZrO2 nanostructure showed a strong and broad emission peak at around 410 nm at room temperature, which can be attributed to the ionized oxygen vacancy in the material.  相似文献   

20.
Polythiophene/titanium dioxide (PT/TiO2) composites were prepared by the in situ chemical oxidative polymerization method. The resulting PT/TiO2 composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (SEM). UV–Vis diffuse reflectance spectra measurements show that the PT/TiO2 composites can adsorb light of wavelengths ranging from 200 nm to 800 nm. The PT/TiO2 composites showed good adsorption properties and were more efficient in removing dye from solution than pure PT and pure TiO2. The PT/TiO2 composites exhibited photocatalytic activities to some extent under UV light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号