首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the purpose of constructing a reverse osmosis [RO) sea water desalination plant of 800 m3/day capacity, a series of tests on the following themes have been carried out in the Chigasaki Laboratory:

1. Performance and durability of 8B modules made in Japan

2. Simplification of pretreatment system

3. Establishment of energy recovery system.

Domestic modules showed good and stable performance during long term operation, and water recovery ratio of these modules have been raised to 40%.

In-line coagulation and filtration system has been established for the pretreatment of feed sea water, instead of coagulation, sedimentation and filtration system.

The energy recovery equipment is consisted of a high-pressure pump, a motor and a hydraulic turbine on a common base. Recovered energy from pressurized brine is used for the auxiliary motive power of the high-pressure pump. The experimental data show that about 20% of required power for the pump was recovered.  相似文献   


2.
Two large Libyan desalination plants are studied :

1. The Ganzour (Tripoli West) MSF plant with two units, each having a rated distillate output of 11,250 m3/day at full load, the distilla- te purity being 25 ppm. The reliability tests on this plant are just beginning and consequen- tly we shall stress on the erection problems.

2. The Zliten MSF plant with three units, each having a distillate production rate of 4525 m3/day, the distillate purity being 25 ppm. This plant being in operation, we shall stress on the occuring maintenance problems.

All difficulties encountered (during erection for Ganzour plant and during maintenance for Zliten plant) are studied in details. Also the influence of each plant on the development of surrounding regions is considered. Recommendations to both sides (Libyan government and foreign plant manufacturers) are made in order to avoid the future repetition of these problems and troubles.  相似文献   


3.
All seawater desalting processes, multi-stage flash (MSF), multi-effect boiling (MEB), mechanical vapor compression (MVC) and seawater reverse osmosis (SWRO) consume significant amounts of energy. The recent increase of fuel oil cost raises the cost of energy consumed for desalting water and the final water cost, and creates more interest in using more energy efficient desalting systems.

The most used desalting systems by distillation (MSF and MEB) are usually combined with power plants in what is called co-generation power desalting plants, CPDP. Fuel is supplied to the CPDP to produce both desalted water D and power W, and the fuel cost is shared between D and W. Exergy analysis and equivalent work are among the methods used to determine the fuel energy charged to each product. When desalting systems, such as SWRO and MVC, are not combined with a power plant, the fuel energy can be directly determined from its electrical power consumption.

In this paper, the fuel energy cost charged to desalting seawater in the presently used CPDP in Kuwait is calculated based on exergy analysis. The MSF, known by its high energy consumption, is the only desalting method used in Kuwait. The MSF units consume 258 kJ/kg thermal energy by steam supplied to the brine heater BH, 16 kJ/kg by steam supplied to steam ejectors, and 4 kWh/m3 mechanical energy for pumping. These MSF units are operated either by:

(1) Steam extracted from extraction/condensing steam turbines EC/ST as in as in Doha West, Azzour, and Sabbiya CPDP. This practice is used in most Gulf area.

(2) Steam supplied directly from boilers as occurred in single purpose desalting plants as Al Shuwaikh plant; or in winter time when no steam turbines are in operation in the CPDP to supply steam to the desalting units.

The CPDP have limited water to power production ratio. While they can cope with the increase of power demand, it cannot satisfy the water demand, which is increasing with higher pace than the power demand.

The case of steam CPDP used in Kuwait is presented in this paper as a reference plant to evaluate the amount of fuel energy consumed to desalt water in MJ/m3, its cost in $/m3. The resulted high fuel cost calls for some modifications in the reference CPDP to lower the energy cost, and to increase its water to power ratio. The modifications include the use of an auxiliary back-pressure steam turbine ABPST supplied with the steam presently extracted to the MSF units. The power output of the ABPST operates MVC or SWRO desalting units; while the ABPST discharged steam operates LT-MEB desalting unit. The desalting fuel energy costs when applying these modifications are also calculated by the exergy analysis and compared with that present situation.

It is also suggested to increase desalted water output by using separate SWRO desalting units operated by the existing power plants of typical ηc = 0.388, or by new combined gas/steam turbines power cycle GT/ST-CC of typical ηc = 0.54 under construction. The SWRO with energy recovery is assumed to consume typical 5.2 kWh/m3 electric energy.  相似文献   


4.
Arian Edalat   《Desalination》2008,220(1-3):57-64
Implementation of ISO 14001:2004 (environmental management system) has been executed for reverse osmosis desalination plants for the first time in Iran at Noor Vijeh Company (N.V. Co), a water and wastewater firm based in Tehran. The scope of work was the activities and product of company's BWRO desalination plant in the city of Qom (3000 m3 per day) and SWRO desalination plant in Assaluyeh, Pars Special Economic and Energy Zone, Iran. The aims of this project were in line with company’s approach to sustainable development and its direction towards conducting environmental friendly activities and production characteristics.

Initially the famous PDCA (Plan, Do, Check, Act) was used to identify the aspects and evaluate their effects. The significant aspects of each plant affecting the environment are then identified and preventive control measures and reducing their probabilities of loss are anticipated. These cover the normal activities within each plant and those aspects arising from emergency conditions such as earthquakes, fire, etc.

Elements of this system are

• Environmental policy and its targets and programmes

• Practical methods for environmental management system processes

• Executive manuals for implementing special activities

• Tables and indexes for environmental aspects for each plant

• Organizational charts, positions, qualifications, and necessary trainings for the involved personnel.

Environmental aspects are evaluated through their interaction with and effects over, releases to water, emissions to air, land contamination, waste management, energy use, and use of natural resources and raw material.  相似文献   


5.
太阳能吸收式空气取水利用广泛存在的太阳能和空气获取淡水,是解决淡水短缺的有效方法,然而传统技术的水分吸收和解吸收集需要分开运行,效率较低且需要人工操作。为解决该问题,提出基于吸湿盐溶液太阳能界面蒸发的连续式空气取水,一方面采用LiCl溶液吸收空气中的水分,另一方面利用太阳能界面蒸发实现溶液解吸与水蒸气冷凝收集,由于太阳能界面蒸发可以实现局部加热与解吸,吸收和解吸两个过程可以同时进行。进一步对LiCl溶液的太阳能界面蒸发与连续空气取水分别进行了试验研究,试验结果显示:质量分数为30%的LiCl溶液可以进行高效的吸收/解吸工作,在一个太阳光照强度下达到0.44 kg/(m2·h)的蒸发速率和39.3%的能量效率,并能实现连续太阳能空气取水,取水速率达到2 L/(m2·d)。  相似文献   

6.
A comparative investigation of the economics of desalting based on current and projected technology has been made. Current operating cost of various plant types operating in Israel are reported. These costs range from less than $.4/m3 for membrane plants desalting brackish water to more than three times as much for thermal plants desalting seawater. For new systems, two plant sizes were evaluated: 4,000 m3/day plants applying current technology and 100,000 m3/day plants applying projected technology. The water costs obtained for the various plant types and applied economic parameters, especially energy prices, range between $.2/m3 and $.6/m3 for brackish water desalting and from $.5/m3 to $2.4/m3 for seawater desalting.  相似文献   

7.
Sidney Loeb 《Desalination》1998,120(3):2421-262
In recent years two types of very large-scale plants have been proposed for handling seawater brought to the Dead Sea, both processes taking advantage of the 400 m drop to Dead Sea level and both sized to replenish the 3,000,000 m3/d evaporation rate of the Dead Sea. Pressure-retarded osmosis (PRO), the process discussed herein, would use the replenishment stream to produce an appreciable amount of benign and renewable electric power. If the seawater plant prior to PRO would be reverse osmosis (RO), handling 5,000,000 m3/d to produce 2,000,000 m3/d of fresh water, PRO could produce 48,000 kW from the RO-concentrated seawater feed at a capital cost for power of about $4,000 per kilowatt and a PRO plant cost of $190,000,000. The electrical energy would be produced at a cost of about $0.07/kWh. The PRO plant would use a DuPont B-9 type or similar hollow fiber modified to have 110 and 320 micron internal and outer diameters (instead of 40 and 90). Osmotic permeation of half of the 3,000,000 m3/d RO reject brine into Dead Sea brine would produce 35 atmospheres of hydrostatic pressure relieved by passage of an equivalent volumetric rate of diluted Dead Sea brine through a hydroturbine/generator set. The second type of plant prior to PRO would use 3,000,000 m3/d of seawater to produce hydropower, estimated at about 130,000 kW. The permeation rate in PRO could then be 2,000,000 m3/d enabling power production in PRO of 70,000 kW at a capital cost for power of $3,300 per kilowatt and a PRO plant cost of $230,000,000. The cost of produced energy in PRO would be $0.058/kWh. It is believed that the Great Salt Lake should also be examined as a site for PRO.  相似文献   

8.
A computer program (named SOLDES) was developed to simulate the operation of solar desalination plants which utilize evacuated tube collectors, heat accumulators and multiple-effect distillation (MED) systems. The heat accumulator used is of the thermally stratified type using pure water as the storage fluid. The procedure was written in Fortran language and consists of a main program, 22 sub-programs, two system data files and four meteorological data files. The absorber area of the solar collector field can be varied between 500 m2 and 20,000 m2; the storage capacity per unit collector area of the heat accumulator can vary between 0.05 and 1.00m3/m2; the capacity of the evaporator can be varied between 100 m3/d to 2000 m3/d. The heat collecting system uses a bypass circuit to allow the heat collecting fluid (pure water) to recirculate back to the solar collector field when the outlet temperature from the collector field is below a set-point. When the collector outlet temperature rises above the set-point, operation is switched over to the accumulator side. A solar-cell-type controller is used to start and stop the water circulating pump of the collector field. The operation of the MED evaporator is controlled by the state of charge of the heat accumulator by the use of set-point switches which allow the evaporator to start up when the accumulator water temperature is above a set-point and to shut down if the water temperature drops below the set point. In order to validate the SOLDES program, a comparison was made between the predicted results of the program and the actual measured data from a solar plant of similar design features to the simulation program. The selected plant was the one in actual operation in Abu Dhabi, UAE, which has almost identical design features as the simulation program and has been in operation since 1984. The data from the plant collected during 1985 were used to compare the simulation results for the months of January and June. These two months were found to be typical of a winter month (January) and of summer months (June). Except for days when a plant interruption took place, such as a power failure, the agreement between the measured and simulation data appears to be quite good.  相似文献   

9.
Hydrodenitrogenation of isoquinoline   总被引:1,自引:0,他引:1  
To determine the formation and reactivity of addition compounds produced during hydrodenitrogenation (HDN), we investigated the HDN of isoquinoline for a sulfided Ni–Mo/Al2O3 catalyst operated under a hydrogen pressure of 12 MPa (cold charge) in the temperature range 300–375°C. The reaction products were classified into five groups of compounds:

1. hydrogenated derivatives of isoquinoline (tetrahydroisoquinolines, decahydroisoquinolines, and their isomers);

2. nitrogen-containing ring-opened products (1-amino-2-(2-methylphenyl)ethane and 1-amino-1-(2-ethylphenyl)methane);

3. denitrogenated products (1-ethyl-2-methylbenzene, 1-ethyl-2-methylcyclohexane, and their isomers);

4. addition products (hydrocarbons with molecular weights of 238, 244, and 250 and nitrogen-containing compounds with molecular weights of 249, 251, and 257); and

5. cracked products (toluene, ethylbenzene, dimethylbenzenes, and their hydrogenated derivatives).

Most of the nitrogen-containing addition compounds appear to be substituted on the nitrogen atom. The HDN of isoquinoline was more than 10 times faster than the HDN of quinoline, whereas the hydrogenation of isoquinoline was difficult compared to the hydrogenation of quinoline. The reaction network for the HDN of isoquinoline is also presented.  相似文献   


10.
Three examples of the work undertaken at the Institut de Recherches sur la Catalyse for the selective preparation of fine chemicals in polyphasic media are presented and discussed:

1. diastereoselective hydrogenation of 1,2-disubstituted arenes to cyclohexyl derivatives,

2. chemoselective oxidation of anilines, and

3. regioselective alkoxycarbonylation of styrene derivatives to 2-arylpropionic esters.

Factors influencing the selectivity of these reactions are discussed in the light of concepts from molecular chemistry.  相似文献   


11.
A new route of methanol synthesis, at 443 K and under pressurized conditions, from carbon dioxide and hydrogen through formic ester was investigated, by using Cu-based catalysts. This one-pot reaction consisted of three steps:

1. formic acid synthesis from CO2 and H2,

2. esterification of formic acid by ethanol to ethyl formate, and

3. hydrogenolysis of ethyl formate to methanol and ethanol.

Author Keywords: Carbon dioxide; Hydrogenation; Hydrogenolysis; Methanol; Ethyl formate  相似文献   


12.
Over exploitation of non-renewable energy reserves will lead to increase in price of petroleum fuels. Therefore there is a need for suitable and sustainable substitutes (renewable resource) for conventional fuels. In this study, an efficient and environmental friendly method for production of bio-diesel from Pongamia (Karanja) oil has been developed using a solar reactor. During the experimental study, the maximum temperature attained by the pongamia oil during the transesterification process was 64.1 ℃. The transesterification reaction was studied by varying different parameters such as reactant flow rate (5–20 L·h-1), stirring speed (150–450 r·min-1), catalyst mass loading (0.5%–2%) and methanol to oil ratio (3:1 to 15:1). The maximum biodiesel yield was 83.11% at a flow rate of 5 L·h-1, stirring speed of 350 r·min-1, a methanol to oil ratio of 15:1, catalyst mass loading of 1% and reaction time of 270 min. The physical and chemical properties of biodiesel was analyzed as per American Society for Testing Materials (ASTM) standards and it had density of 938 kg·m-3, viscosity (28.7×10-6 m2·s-1), acid value (9.45 mg KOH·(g oil)-1) and flash point (215 ℃). The energy efficiency of solar heating process was determined by comparing the net energy ratio of direct heating process and solar heating process. For solar heating the net energy ratio (NER) was found to be 31.85 against 5.73 for direct heating. Similarly, net energy efficiency index was calculated for 10 kg production scale and was found to be increasing when scaled up which means that the solar heating process is more effective even in scaled up production.  相似文献   

13.
陶亨聪  竺柏康  王东光 《化工学报》2013,64(Z1):133-139
实验搭建了一块120 m2的浅滩鼓泡浓海水晒盐池,盐池中含9120个直径为1 mm的鼓气孔,采用额定流量为420 m3·h-1的鼓风机鼓泡。测定了鼓泡池及1 m2对照盐池液位、温度、波美度、环境温湿度的变化,分析了气象条件和鼓气量对蒸发量的影响。研究表明,从上午12点至下午3点鼓泡晒盐效果最佳,在最佳条件下比对照池每小时可多蒸发120 kg水蒸气,但通过鼓气直接带走的水蒸气量不足8.7 kg,漂浮的气泡使盐池表面积增加50%~60%,多蒸发约50%的水蒸气,其余的水蒸气通过其他方式蒸发。与传统晒盐方法相比,浅滩鼓泡晒盐具有更快的蒸发速率,若能显著降低鼓泡管路成本和能耗,将具有较好的应用前景。  相似文献   

14.
海水淡化旋转式能量回收装置(RERD)高、低压流体间的泄漏主要在转子与端盘的配合间隙中发生,这种泄漏直接影响到装置的能量回收效率水平。本文通过在平面端盘上引入阻尼孔和静压支承槽,构建了静压支承端盘方案,将静压支承技术应用到自主开发的电驱RERD装置中,以解决其运行过程中泄漏量大、能量回收效率低等问题。在转子与上、下端盘配合总间隙为0.04mm、转子转速为500r/min的条件下,RERD分别使用平面端盘和静压支承端盘进行对比实验研究。结果表明,在操作压力为4.5MPa和处理量为13m3/h的工况下,与平面端盘相比,采用1#静压支承端盘(静压支承槽槽宽为2.0mm)时,装置的泄漏量从0.45m3/h减小至0.28m3/h,能量回收效率从91.3%提升至92.7%。采用2#静压支承端盘(静压支承槽槽宽为3.0mm)的RERD在相同工况下,装置的泄漏量可降低至0.11m3/h,能量回收效率提升到95.0%。上述研究显示静压支承技术对于减小RERD装置泄漏量、提高装置效率具有显著的效果,对RERD装置密封结构设计与优化具有指导意义。  相似文献   

15.
K. Alyürük  T. zden  N. Colak 《Polymer》1986,27(12):2009-2012
Partially stereoregular poly(propylene oxide) samples were synthesized via reactions catalysed by a preformed analytically defined trimethylaluminium hydrolysate. These samples were fractionated into two contrastingly different fractions.

1. (i) D-polymers: This fraction constituted the major part (up to 90%). It mainly contained cyclic low molecular weight oligomers (MW < 1000). The linear chains found in D-polymers had hydroxyl end groups. No double bonds could be detected spectroscopically.

2. (ii) K-polymers: This fraction was high molecular weight stereoregular polymer. Stepwise thermal precipitation from dilute isooctane solution of K-polymers yielded a succession of fractions which differed in melting point. It appears that the phase equilibria during the thermal precipitations were not controlled by the molecular weights of species.

Author Keywords: trimethylaluminium hydrolysate; stereoregular; poly(propylene oxide); fractionation; end-group analysis; cyclic oligomers  相似文献   


16.
白炳林  杨晓宏  田瑞  史盼敬  李达 《化工学报》2019,70(9):3517-3526
自主设计并搭建了太阳能光热-光电中空纤维膜蒸馏系统,太阳能光热采用面积1.82 m2真空管集热系统,光伏发电采用面积1.63 m2多晶硅电池板。实验方面,研究了不同工况下,热料液在不同流动方式时膜通量的差异;研究了在不同跟踪方式下太阳辐照度对系统性能的影响。结果表明:料液在管程流动的膜通量大于壳程的膜通量,且进口料液温度取50~70℃之间为宜;自动跟踪下膜组件入口温度比非跟踪高2~3℃,可以延长膜蒸馏系统运行时间1~2 h,且在相同的自然环境下,自动跟踪方式最大膜通量8.89 kg/(m2·h)远高于非跟踪方式时4.26 kg/(m2·h)。理论方面,分析了以水为工质的中空纤维膜蒸馏的传热和传质过程,建立了传热传质理论计算数学模型;分析了辐照强度、膜表面温差、膜丝内表面传热系数、传热与传质通量的定量关系,计算了膜面温度与理论膜通量,对比了实验值与理论值。系统运行稳定,能量综合利用效率高,性能可靠,为工程应用奠定了理论和实验基础。  相似文献   

17.
设计并搭建了太阳能光热-光电方腔型膜蒸馏系统,为研究该系统机理与优化问题,首先以料液进口温度、流量、太阳辐照度为影响因子,膜通量、能耗为响应值,采用响应面法分析各影响因子与响应值间的关系;其次结合中心复合设计法设计实验工况,建立响应值与影响因子的二次多项式回归模型,通过方差分析、实验验证对所建立的模型进行可靠性分析;最后对响应值进行响应面分析与系统优化,获得了系统最佳运行工况和最优膜通量、能耗值,并进行了实验验证。结果表明,系统最佳工况为:料液进口温度为63℃,料液进口流量为232 L/h,太阳辐照度为700 W/m2,在此工况下实际膜通量达到7.28 L/(m2·h),高于预测值6.39 L/(m2·h),两者误差为12.23%,对应的能耗值为10.40 L/(kW·h)。  相似文献   

18.
张昊  申凯  赖艳华  崔琳  董勇 《化工学报》2019,70(6):2269-2278
燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2 m3/h的情况下,可以实现5 kg/h以上的水分回收量。  相似文献   

19.
光伏光热一体化系统流量的分析与优化   总被引:1,自引:0,他引:1  
王博飞  李舒宏 《化工进展》2018,37(10):3826-3831
建立水冷型PV/T热水系统模型并搭建实验台,从发电量、集热量和水泵耗电量各方面考虑,模拟计算流量变化对系统性能的影响,并结合相对应工况下的实验数据进行对比分析。结果表明:存在最佳流量值使得水冷型PV/T系统综合效率最大,最佳流量值大小与太阳辐射值为正系数线性关系,南京夏季典型工况下系统的最佳流量在0.02kg/(s·m2)左右。以此为基础,本文提出了变流量运行方式优化系统性能,即根据太阳辐射强度调整系统运行流量使水冷型PV/T全天运行时刻处于最高综合效率,结果表明:以实际工程0.072m3/(h·m2)定流量运行为参照实验,全天运行变流量系统实际能量比其多收益19808J。因此,对PV/T系统流量的分析和优化是极有意义的,变流量运行有实际应用前景。  相似文献   

20.
Economics of small solar-assisted multiple-effect stack distillation plants   总被引:1,自引:0,他引:1  
The objective of this paper is to compare the economics of using solar energy to operate small, multiple-effect seawater distillation systems in remote areas with the conventional method of using fossil fuels. The particular multiple-effect system used is an advanced horizontal-tube, falling-film system called “multiple-effect stack” (MES) in which the pumping energy requirement is relatively low compared with the horizontal in-line system. Three system configurations were investigated: (1) a conventional system using a steam generator to provide steam for the MES evaporator and a diesel generator to provide pumping power, (2) a solar-assisted system which uses solar thermal collectors to provide hot water (instead of steam) for the evaporator and a diesel generator for pumping power, and (3) a solar stand-alone system which uses solar thermal collectors for the evaporator heat requirement and a solar PV array to provide electrical energy for pumping. At the present time, solar energy cannot compete favorably with fossil energy, particularly under the present international market prices of crude oil. However, in many remote sunny areas of the world where the real cost of fossil energy can be very high, the use of solar energy can be an attractive alternative. Two important cost parameters affect the relative economics of solar energy vis-à-vis conventional (fossil) energy: the collector cost in dollars per square meter and the cost of diesel oil in dollars per giga Joule. Solar energy becomes more competitive as the local cost of procuring conventional fuel increases and as the collector cost decreases. The water cost from a solar thermal-diesel-MES system (configuration #2) can be seen to approach the water cost from a steam generator-diesel-MES system (configuration #1) when the collector cost drops to $200/m2 and diesel oil cost at the remote site reaches $50/GJ. Using a 100% solar system (configuration #3) with solar thermal and solar PV collectors, the economics was seen to improve in favor of the solar system. Even when diesel fuel can be procured at $10/GJ at the remote site, the cost of water from the solar system can be seen to approach that from a conventional plant when thermal collectors costing $200/m2 are used. The cost of water from the solar system was shown to be always less than that from a conventional system which uses diesel oil procured at the high price of $50/GJ, but always higher than water produced from a conventional system using diesel oil at the low price of $10/GJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号