首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel microstrip bandpass filter with three types of rectangular, photonic bandgap (PBG) loops on a middle layer was designed and demonstrated using a full-wave electromagnetic (EM) simulator, with the predicted results verified by experiment. This investigation presents the configurations of conventional parallel-coupled 2 GHz filters with arid without a PBG. The middle-layer of PBG loops adds an extra stopband-rejection mode to filter stop-band; and it provides attenuation in excess of 25 dB at the second, third, and fourth harmonics, thus demonstrating that superior stopband characteristics at high frequency can be obtained using the proposed PBG loops in microwave filters.  相似文献   

2.
Adaptive optics takes its servo feedback error cue from a wavefront sensor. The common Hartmann-Shack spot grid that represents the wavefront slopes is usually analyzed by finding the spot centroids. In a novel application, we used the Fourier decomposition of a spot pattern to find deviations from grid regularity. This decomposition was performed either in the Fourier domain or in the image domain, as a demodulation of the grid of spots. We analyzed the system, built a control loop for it, and tested it thoroughly. This allowed us to close the loop on wavefront errors caused by turbulence in the optical system.  相似文献   

3.
Oba K  Sun PC  Mazurenko YT  Fainman Y 《Applied optics》1999,38(17):3810-3817
We introduce, analyze, and experimentally demonstrate what to the best of our knowledge is a new pulse correlation technique that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image. Our technique uses a grating at the entrance of the system, thus introducing a transverse time delay (TTD) into the transform-limited reference pulse. The shaped signal pulses and the TTD reference pulse are mixed in a nonlinear optical crystal (LiB(3)O(5)), thus producing a second-harmonic field that carries the spatial image of the temporal shaped signal pulse. We show that the time scaling of the system is set by the magnification of the anamorphic imaging system as well as by the grating frequency and that the time window of the system is set by the size of the grating aperture. Our experimental results show a time window of ~20 ps. We also show that the chirp information of the shaped pulse can be recovered by measurement of the spectrum of the resulting second-harmonic field.  相似文献   

4.
A novel microstrip bandpass filter with three types of rectangular, photonic bandgap (PBG) loops on a middle layer was designed and demonstrated using a full-wave electromagnetic (EM) simulator, with the predicted results verified by experiment. This investigation presents the configurations of conventional parallel-coupled 2 GHz filters with and without a PBG. The middle-layer of PBG loops adds an extra stopband-rejection mode to filter stopband; and it provides attenuation in excess of 25 dB at the second, third, and fourth harmonics, thus demonstrating that superior stopband characteristics at high frequency can be obtained using the proposed PBG loops in microwave filters.  相似文献   

5.
Downie JD 《Applied optics》1995,34(20):3896-3903
Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-? correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technlogy. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.  相似文献   

6.
We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.  相似文献   

7.
Optical images of textured liquid-crystal films containing various types of twist disclination loops are computed using an approximate matrix method and a direct numerical simulation based on the finite-difference time-domain (FDTD) method. The selected defects introduce large multidirectional spatial gradients in the optic axis, mimicking the orientation textures that arise in the construction and use of biosensors based on liquid-crystal vision. It is shown that under these experimentally relevant conditions, the matrix method fails to capture important signatures in the transmitted light intensity under crossed polarizers. The differences between the predictions by the two methods are analyzed with respect to gradients in the optic axis. We show that the FDTD method is a useful tool to perform computational optics of textured liquid-crystal films.  相似文献   

8.
Hack E  Gundu PN  Rastogi P 《Applied optics》2005,44(14):2772-2781
An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.  相似文献   

9.
A new deconvolution approach is described for reconstructing fast, step-like, or impulsive signals that have been measured with a sampling oscilloscope for which an impulse response estimate is available. The approach uses analytic reconstruction filters to control noise amplification and a new noniterative filter optimization that is based on a calculated “indicated error” function that is similar in shape to the true error. The new method aids in reporting uncertainties of the deconvolution results and it permits the use of time-domain weighting to optimize the measurement of different waveform features, The performance of the proposed approach is compared with that of the error energy/regularization approach that is currently popular  相似文献   

10.
Arain MA  Riza NA 《Applied optics》2006,45(11):2428-2436
A multitap negative and positive coefficient radio-frequency transversal filter is implemented by using a digital-micromirror-device spatial light modulator for weighting-factor control and a chirped fiber Bragg grating for time-delay control. The demonstrated architecture is reconfigurable, has high speed and low loss, and is robust through digital programmability for a wide variety of filtering algorithms. A design using an interleaver for differential detection realizes an ultrahigh bandwidth with a maximum processable frequency of 33.7 GHz. A multitap low-pass filter, a negative tap notch filter with 40 dB attenuation, and a multitap negative coefficient bandpass filter are experimentally demonstrated. The results are in agreement with theory.  相似文献   

11.
12.
The polynomial chaos Kalman filter (PCKF) has been gaining popularity as a computationally efficient and robust alternative to sampling methods in sequential data assimilation settings. The PCKF's sampling free scheme and attractive structure to represent non‐Gaussian uncertainties makes it a promising approach for data filtering techniques in nonlinear and non‐Gaussian frameworks. However, the accuracy of PCKF is dependent on the dimension and order of the polynomial chaos expansion used to represent all sources of uncertainty in the system. Thus, when independent sources of errors, like process noise and time independent sensors' errors are incorporated in the system, the curse of dimensionality hinders the efficiency and the applicability of PCKF. This study sheds light on this issue and presents a practical framework to maintain an acceptable accuracy of PCKF without scarifying the computational efficiency of the filter. The robustness and efficiency of the presented implementation is demonstrated on 3 typical numerical examples to illustrate its ability to achieve considerable accuracy at a low computational tax.  相似文献   

13.
Larouche S  Martinu L 《Applied optics》2007,46(30):7436-7441
The Fourier transform method to design graded-index optical filters, that relates the desired reflection spectrum and the index profile through the use of a Q function, has two important drawbacks: (1) It relies on approximate Q functions, and (2) it does not account for the dispersion of the index of refraction. The former is usually addressed by an iterative correction process. We propose to address the latter by scaling the wavelength in the Fourier transform by the optical thickness of the filter and to multiply the Q function by a wavelength-dependent correction factor. We demonstrate the high effectiveness of this approach by the performance of optical filters designed with such correction factors using the optical properties of SiO2/TiO2 mixtures.  相似文献   

14.
Munshi S  Beri VK  Gupta AK 《Applied optics》2007,46(20):4304-4319
The simulated annealing (SA) algorithm based on entropy optimization is a technique of synthesizing distortion-invariant matched filters capable of discriminating very similar images. The synthesis of rotation-invariant filters using modified SA-based filter equations and their tolerance to distortions are studied. The filters are trained with true class images rotated in-plane at 3 degrees intervals between 0 degrees and 360 degrees . A total of seven filters are required over the whole range for both CCD or thermal images. Optical correlation in a hybrid digital-optical correlator results in an unwanted zero-order dc along with two first-order (+/-1) correlation peaks. A chirp function multiplied with the filter separates out the three peaks to three different planes, and only one peak in focus is captured in a camera. The performance of the modified SA-based filter has been studied in comparison to the conventional SA filter as well as with other filters.  相似文献   

15.
This study presents a novel time-domain feature to identify impact locations using Multilayer Perceptron. This feature is based on the minimum arrival time (MAT) of surface wave at a particular location of an object due to impact. Trial impact forces were made on a Perspex plate structure and corresponding acceleration responses were acquired from six locations. Two other conventional time-domain features – peak arrival time (PAT) and threshold crossing (TC), were compared with the proposed feature. Each feature was used separately as network inputs to identify 15 fixed impact locations. The results showed that impact localization with MAT feature resulted in the highest accuracy, making a relative decrease in error of 42.06 and 81.04% compared to PAT and TC cases, respectively. A consistency measurement scheme has been developed as well, which indicated that MAT is more consistent than PAT and TC for a particular pair of impact-sensor location, and hence a more accurate localization of impact can be obtained.  相似文献   

16.
Abstract

Spectral bandpasses of a miniature spectrometer with three read fibres of different core diameters are obtained using the visibility functions for both spatial and spectral fringes resolved in the interference of two light beams from a laser diode operated below the threshold. From a width of the central peak of the visibility function for the spatial interference fringes measured in the Michelson interferometer configuration with a broadband detector, the source spectral width is evaluated. From widths of the visibility functions for the spectral interference fringes measured in the Michelson interferometer configuration by the spectrometer with the different read fibres, the overall spectral bandpasses are evaluated. Subtracting the effect of the source spectral width, the spectral bandpasses of the fibre-optic spectrometer are determined. These are compared with the directly measured bandpasses using the delta-function spectrum of the same laser diode operated far above the threshold.  相似文献   

17.
The theory and mathematical bases ofa-posteriori error estimates are explained. It is shown that theMedial Axis of a body can be used to decompose it into a set of mutually non-overlapping quadrilateral and triangular primitives. A mesh generation scheme used to generate quadrilaterals inside these primitives is also presented together with its relevant implementation aspects. A newh-refinement strategy based on weighted average energy norm and enhanced by strain energy density ratios is proposed and two typical problems are solved to demonstrate its efficiency over the conventional refinement strategy in the relative improvement of global asymptotic convergence.  相似文献   

18.
A novel cochannel single antenna interference cancellation (SAIC) receiver is proposed for synchronised Group Special Mobile (GSM) systems. The receiver uses a two-stage strategy, where in the first stage cochannel interference is cancelled by a widely linear filter, while inter-symbol interference due to the GSM frequency-selective Rayleigh-fading environment is removed by a second-stage equaliser. Analytical results for the optimal widely linear filter coefficients are derived. Simulation results show excellent performance with large gains over the conventional receiver under interference limited channel conditions. It is shown that the conventional maximum likelihood sequence estimator or maximum a posteriori probability receiver is optimal when cochannel interference it not the dominant impairment, and it is proposed that the SAIC algorithm is disabled when the estimated carrier-to-interference (C/I) ratio is above a certain threshold  相似文献   

19.
In this study, the crack problem in linear viscoelastic material is investigated numerically. The time dependent two-dimensional (2D) viscoelastic crack problem is treated by the precise time-domain expanding algorithm (PTDEA), such that the original problem is transformed into a series of quasi-elastic crack problems. The relationships among these quasi-elastic problems are expressed in terms of the time-domain expanding coefficients of displacement and stress in an improved recursive manner. Then a symplectic analytical singular element (SASE) which has been demonstrated to be effective and efficient for 2D elastic fracture problem is applied to solve the quasi-elastic crack problems obtained above. The SASE is constructed by using the symplectic eigen solutions with higher order expanding terms. An improved convergence criterion employing both displacement and stress for PTDEA is proposed. Taking advantage of the SASE, the stress intensity factors, crack opening and sliding displacements (COD and CSD) and strain energy release rate of the studied problem can be solved directly without any post-processing. Numerical examples show that the results of the present method can be solved accurately and effectively.  相似文献   

20.
Coarse time quantization of delay profiles within ultrasound array systems can produce undesirable side lobes in the radiated beam profile. The severity of these side lobes is dependent upon the magnitude of phase quantization error--the deviation from ideal delay profiles to the achievable quantized case. This paper describes a method to improve interchannel delay accuracy without increasing system clock frequency by utilizing embedded phase-locked loop (PLL) components within commercial field-programmable gate arrays (FPGAs). Precise delays are achieved by shifting the relative phases of embedded PLL output clocks in 208-ps steps. The described architecture can achieve the necessary interelement timing resolution required for driving ultrasound arrays up to 50 MHz. The applicability of the proposed method at higher frequencies is demonstrated by extrapolating experimental results obtained using a 5-MHz array transducer. Results indicate an increase in transmit dynamic range (TDR) when using accurate delay profiles generated by the embedded-PLL method described, as opposed to using delay profiles quantized to the system clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号