共查询到20条相似文献,搜索用时 25 毫秒
1.
温度植被干旱指数(TVDI)是进行干旱研究的有效指标,是反演土壤湿度的重要方法。植被覆盖类型是影响TVDI大小的重要因素。利用修正的土壤调整植被指数MSAVI替换NDVI,以便最小化土壤背景影响和提高对密植被的光谱敏感性,并在此基础上,比较基于植被分类计算的TVDI与基于传统方法计算的TVDI的大小,来研究植被类型对TVDI提取结果的影响。对比分析表明,阔叶林、灌丛和密草地的平均值与传统方法计算的差别较大,变化分别是+7.2%、-5.5%和-6.6%,产生平均值偏移主要是由于植被类型的冠层结构和光学属性的差异带来的LST-MSAVI空间特征干湿边的变化引起的。因此,在应用TVDI指数进行大范围干旱化研究和土壤湿度反演时,不同植被类型不能一起作LST-MSAVI空间特征来计算TVDI指数,需要考虑植被类型等影响因素,达到提高土壤湿度反演精度的目的。 相似文献
2.
以热带常绿阔叶林为主的亚马逊流域在全球气候变化的背景下频繁遭受干旱胁迫。但是对于该地区实施长时间序列的干旱监测一直是难点和热点。基于Liu等2017年提出的微波温度—植被干旱指数(Microwave Temperature-Vegetation Drought Index,MTVDI),对亚马逊流域进行了2003—2008年长时间序列的干旱监测,并采用饱和水汽压差(Vapor Pressure Deficit, VPD)、帕尔默干旱指数(Palmer Drought Severity Index, PDSI)、陆地地下水储量(Terrestrial Water Storage, TWS)、气象水分亏缺(Climatological Water Deficit, CWD)对MTVDI进行验证。结果表明:对于整个研究区而言,MTVDI与VPD (R=0.72)和CWD (R=-0.57)相关性较显著,但与TWS和PDSI相关性较弱。总体上,MTVDI能够较好地反映亚马逊地区干旱的季节动态。 相似文献
3.
遥感技术在干旱监测中具有其他技术不可替代的优势。利用2005年8~9月的MODIS产品,获取逐日地表温度数据和逐日植被指数数据,建立了LST\|NDVI特征空间,根据此特征空间建模,计算得出温度植被干旱指数作为表征干旱的监测指标,并结合2005年土壤湿度数据对该指标进行定量验证。在此基础上利用ArcGIS软件分析了2005年8~9月吉林省干旱时空分布特征。结果表明:吉林省干旱总体分布趋势从东南到西北呈现出湿润到正常-轻旱-中旱-重旱的变化规律,体现出吉林省旱情的多样性和复杂性,8月19日、8月25日、9月8日正常和轻旱分布区域面积所占总区域面积比例分别为26.84%和59.53%、41.31%和41.73%、40.40%和32.83%,9月中旬轻旱和中旱分布最广,其比例分别为38.27%和36.26%;重旱和中旱分布区主要位于白城和松原市,轻旱区主要分布在长春、四平和辽源市,正常分布区集中在吉林、通化和白山市境内,湿润分布区主要分布在延边市。 相似文献
4.
黄淮海平原是我国重要的粮食基地,由于季风、气候等的影响,干旱频发,严重影响了粮食生产,实时监测黄淮海平原的干旱情况,对于合理制定农业政策、指导农业生产具有重要意义。基于MODIS反射率产品、温度产品和气象站点降雨数据等,采用改进归一化水指数(MNDWI)、植被健康指数(VHI)和标准化降水指数(SPI),对黄淮海平原2001~2012年干旱情况进行监测,分析其空间、季节、年际变化规律及其潜在原因,并根据结果确定3个指数的使用条件。结果发现:黄淮海平原燕山山麓和太行山山麓受西伯利亚冬季风的影响,同时由于春天植被覆盖少,水份蒸发较快,易发生春旱;农作物区在海拔25~100m之间比其他地区要干旱;12年间2003年干旱最弱。所采用遥感指数由于对水分温度敏感适用于实时监测,而气象指数SPI适用于长时间序列的干旱变化监测,亦可用于干旱预测。 相似文献
5.
苏丹遥感干旱指数及其适用性 总被引:1,自引:0,他引:1
针对苏丹地区利用遥感手段进行旱情监测的研究相对缺乏这一问题,该文利用MODIS归一化植被指数和地表温度计算植被条件指数、温度植被干旱指数和归一化植被供水指数,利用AMSR-E土壤湿度数据与3种干旱指数进行相关性分析,选取与土壤湿度相关性最好的干旱指数作为干旱监测的指标,对苏丹典型干湿年份的干旱进行监测。定量分析与实验结果表明:归一化植被供水指数与土壤湿度相关性最高,且与降水量存在滞后关系,3种典型植被覆盖类型下归一化植被供水指数的滞后期均为1个月;苏丹干旱主要发生在北部的撒哈拉沙漠及其边缘地区,且干旱分布受季节变化影响显著,其中春季和冬季是干旱发生的高峰期。 相似文献
6.
为实时准确地对新疆农业干旱程度进行反演监测,以新疆焉耆盆地为例,通过运用时空自适应反射率融合模型(Spatio Temporal Adaptive Reflectivity Fusion Model,STARFM)、增强型STARFM(Enhanced STARFM,ESTARFM)模型及灵活的时空数据融合模型(Flexible Spatio Temporal Data Fusion,FSDAF)这3种常见的模型对Landsat 8和MODIS数据进行融合,构建了温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI),并采用土壤相对湿度(Relative Soil Moisture,RSM)数据对TVDI反演结果进行了验证。结果表明:①3种数据融合模型所模拟预测的干旱因子(归一化植被指数和地表温度)与真实Landsat 8数据所反演的干旱因子相比,ESTARFM模型模拟预测的干旱因子判定系数(R2)和均方根误差(RMSE)均优于其他两种模型,归一化植被指数(NDVI)的R2和RMSE分别达到了0.924和0.076,地表温度(LST)的R2和RMSE分别达到了0.877和2.799;②3种数据融合模型模拟预测的TVDI通过与真实Landsat 8数据反演的TVDI及RSM数据进行对比验证,发现ESTARFM模型模拟预测的TVDI与上述两种数据之间的R2也均优于其他两种模型,分别达到了0.873和0.248。ESTARFM模型在一定程度上更能准确地模拟预测同时期Landsat 8影像的TVDI分布状况。 相似文献
7.
针对近年频发的干旱情况不能准确及时监测评估的问题,该文以新疆为研究区域,基于温度植被干旱指数方法,利用2007年到2012年3月~8月MODIS合成产品数据获取归一化植被指数和陆地地表温度,构建LST-NDVI特征空间,得到全区的温度植被干旱指数和旱情等级空间分布图,分析了新疆干旱变化趋势,验证了温度植被干旱指数和降水因子的关系。结果表明:2007年~2012年新疆的干旱面积逐年趋于平稳,空间上表现为南疆旱情高于北疆,春季旱情高于夏季,降水量是影响温度植被干旱指数的重要因子。该研究为政府部门对新疆旱情严重地区治理提供了有效数据保证。 相似文献
8.
土壤水分是监测土地退化的一个重要指标,是气候、水文、生态、农业等领域的主要参数,在地表与大气界面的水分和能量交换中起重要作用。传统的监测土壤水分的方法只能得到单点的数据,很难获得大范围地区的土壤湿度。遥感能够快速方便地获取大区域的地表信息,因此使用遥感监测土壤水分意义重大。主要利用了温度指标干旱指数对三峡库区进行土壤水分反演及其验证。利用TM6波段的亮温方程,计算得出地表温度(Ts),以TM3、TM4波段计算得出归一化植被指数(NDVI);把Ts和NDVI作为基本参数,根据Ts-NDVI特征空间的形状,取中间范围的NDVI,拟合干湿边方程,确定干湿边参数;根据温度植被干旱指数(TVDI)进行土壤湿度等级划分。结果表明,利用TVDI可以很好地反演出地表的土壤湿度信息。 相似文献
9.
干旱作为常见的自然灾害,在世界各地发生的频率日渐增加,已对经济发展、农业生产和人类生活等方面产生了严重影响。但是干旱的类型较多,包括气象干旱、土壤干旱、水文干旱、农田干旱等,无法用单个干旱指数对不同类型的干旱进行监测。按照干旱发生类型,利用气象干旱指数(Standardized Precipitation Index SPI)、土壤水分干旱指数(Soil Moisture Index, SMI)和蒸发压力干旱指数(Evaporative Stress Index, ESI)对美国的旱情进行监测。研究结果表明:不同干旱指数之间呈显著相关,相关系数R在0.7以上。ESI整体监测精度较高,它能够真实反映地表水分盈亏状况,同时与遥感数据结合,可以实现从田块到全球不同尺度干旱实时监测。不同植被类型覆盖下垫面对不同类型干旱响应存在较大差异,草地下垫面对不同类型的干旱响应较为一致,但是随着地上生物量的增加,不同干旱指数监测结果之间差异逐渐增大。因此,在干旱监测时需要考虑植被的结构特征,植被与气候之间的相互作用,才能具体分析不同下垫面的受灾情况,进一步考虑更适合的方法以及干旱指数监测不同下垫面的干旱情况。 相似文献
10.
干旱作为常见的自然灾害,在世界各地发生的频率日渐增加,已对经济发展、农业生产和人类生活等方面产生了严重影响。但是干旱的类型较多,包括气象干旱、土壤干旱、水文干旱、农田干旱等,无法用单个干旱指数对不同类型的干旱进行监测。按照干旱发生类型,利用气象干旱指数(Standardized Precipitation Index SPI)、土壤水分干旱指数(Soil Moisture Index, SMI)和蒸发压力干旱指数(Evaporative Stress Index, ESI)对美国的旱情进行监测。研究结果表明:不同干旱指数之间呈显著相关,相关系数R在0.7以上。ESI整体监测精度较高,它能够真实反映地表水分盈亏状况,同时与遥感数据结合,可以实现从田块到全球不同尺度干旱实时监测。不同植被类型覆盖下垫面对不同类型干旱响应存在较大差异,草地下垫面对不同类型的干旱响应较为一致,但是随着地上生物量的增加,不同干旱指数监测结果之间差异逐渐增大。因此,在干旱监测时需要考虑植被的结构特征,植被与气候之间的相互作用,才能具体分析不同下垫面的受灾情况,进一步考虑更适合的方法以及干旱指数监测不同下垫面的干旱情况。 相似文献
11.
基于MODIS温度和植被指数产品的山东省土地覆盖变化研究 总被引:1,自引:0,他引:1
地表温度(LST)与归一化植被指数(NDVI)构成的NDVI-Ts特征空间具有丰富的地学和生态学内涵。MODIS数据因其优越的时间分辨率、波谱分辨率,已被广泛地运用于各个领域。在本研究中,运用遥感技术和GIS技术相结合的手段,利用NASA提供的MODIS温度产品和NDVI产品,以山东省土地利用图、山东省TM遥感影像图和基于3S技术的山东省森林资源调查项目的外业调查数据为参考和评价标准,以NDVI-Ts时间序列为指标,在进行土地覆盖分类的基础上,分析比较了山东省土地覆盖从2000年到2006年的变化情况。研究结果表明,利用MODIS产品将NDVI-Ts时间序列作为分类特征,在较大尺度范围的土地覆盖分类中具有较高的分类精度,有利于对土地覆盖变化进行动态监测。 相似文献
12.
介绍了两种以植被为观测对象的、利用遥感技术监测干旱的原理和方法,及其应用实例:(1)利用 NOAA 卫星的 AVHRR 数据及 NDVI 值监测干旱,这种方法在监测美国1988年特大干旱中获得成功;(2)利用 Nimbus-7卫星的 SMMR 37GHz 微波频率处的极化差亮温值监测干旱,非洲北部地区的应用实践证实了 SMMR 数据在干旱监测中的用途。 相似文献
13.
使用温度植被干旱指数法(TVDI)反演新疆土壤湿度 总被引:6,自引:1,他引:6
利用MODIS合成产品数据MOD11A2和MOD13A2获取的归一化植被指数(NDVI)和陆地表面温度(Ts)构建Ts-NDVI特征空间,依据该特征空间计算的温度植被干旱指数(TVDI)作为土壤湿度监测指标,反演了新疆8、9两个月份每16 d的土壤湿度。使用野外与卫星同步采样的土壤湿度数据进行验证,发现TVDI指标与实测土壤湿度数据显著相关,能够较好地反映表层土壤湿度,反映的新疆土壤湿度的空间分布与新疆的年降水量分布、年平均相对湿度分布很吻合;同时表明8、9两个月份期间新疆土壤湿度低的区域在不断扩大。 相似文献
14.
基于表层水分含量指数(SWCI)的土壤干旱遥感监测 总被引:1,自引:0,他引:1
土壤湿度和植被生长状况是干旱最重要和最直接的指标,对植被和土壤光谱特征的解译是进行旱情程度判断的重要因子。近期,基于水的光谱反射特性,提出的地表含水量指数(SWCI) 模型能较好地反映地表的含水量值及其变化,可用于大范围的快速的浅层土壤墒情遥感监测。通过与NDVI对比分析发现, 在对浅层(0~50 cm)土壤水分进行监测时,SWCI 比NDVI 更为敏感,这有助于在实时干旱动态监测中更好地采用不同的指数以提高监测精度。 相似文献
15.
基于MODIS数据的农业干旱监测方法对比分析 总被引:4,自引:0,他引:4
利用2004年4月~6月上旬的MODIS影像数据,结合实测的土壤墒情数据,对比不同深度及不同拟合方式下土壤湿度的估算精度。另外,分别选用植被供水指数(VSWI)、基于EVI的植被供水指数(E-VSWI)、归一化多波段干旱指数(NMDI)与对应的土壤湿度数据进行回归分析,并在此基础上利用最优指数实现研究区土壤湿度的估算及旱情监测。结果表明:在华北平原中部地区冬小麦生长季节,利用MODIS数据进行土壤湿度估算的最佳深度是10cm;最佳拟合方式是线性拟合方式;植被供水指数(VSWI)在研究区整个时间序列具有最好的稳定性,可为今后大区域作物生长期的干旱监测提供一个简单方法。 相似文献
16.
NDWI与NDVI指数在区域干旱监测中的比较分析——以2003年江西夏季干旱为例 总被引:8,自引:0,他引:8
植被水分指数NDWI是基于短波红外(SWIR)与近红外(NIR)的归一化比值指数。与NDVI相比,它能有效地提取植被冠层的水分含量;在植被冠层受水分胁迫时,NDWI指数能及时地响应,这对于旱情监测具有重要意义。结合2003年夏季MODIS影像数据和地面气象数据,以江西省内一片农田和一片林地为试验区域,分析比较了NDWI与NDVI距平值在短期旱情监测中的有效性。监测结果表明, NDWI对植被冠层水分信息比NDVI更为敏感;在短期干旱监测中,NDWI指数能准确地反映旱情的时空变化。 相似文献
17.
基于植被指数 地表温度(VI Ts)特征空间的温度植被干旱指数(TVDI)被广泛应用于土壤水分监测,但TVDI为土壤水分相对值,而且利用散点图确定干湿边会造成很大的不确定性。基于能量平衡方程和TVDI,该文提出一种定量干湿边选取方法和改进的TVDI模型——定量温度植被指数(Temperature Vegetation Quantitative Index,TVQI),以MODIS遥感数据为基础,实现了定量干湿边真实土壤水分的遥感估算。结果表明:TVQI估算结果与所观测土壤水分呈0.01水平显著相关,总体上的平均绝对误差小于0.02cm3/cm3,均方根误差RMSE小于0.035cm3/cm3;相对TVDI,TVQI克服了传统干边计算中对植被覆盖类型的限制,更能够准确反应土壤深度在0~10cm、10cm~20cm的土壤水分值,尤其与10cm~20cm土壤水分值更为贴近。 相似文献
18.
基于改进温度植被干旱指数的农田土壤水分反演方法 总被引:1,自引:0,他引:1
《遥感信息》2015,(6)
基于植被指数-地表温度(VI-Ts)特征空间的温度植被干旱指数(TVDI)被广泛应用于土壤水分监测,但TVDI为土壤水分相对值,而且利用散点图确定干湿边会造成很大的不确定性。基于能量平衡方程和TVDI,该文提出一种定量干湿边选取方法和改进的TVDI模型——定量温度植被指数(Temperature Vegetation Quantitative Index,TVQI),以MODIS遥感数据为基础,实现了定量干湿边真实土壤水分的遥感估算。结果表明:TVQI估算结果与所观测土壤水分呈0.01水平显著相关,总体上的平均绝对误差小于0.02cm~3/cm~3,均方根误差RMSE小于0.035cm~3/cm~3;相对TVDI,TVQI克服了传统干边计算中对植被覆盖类型的限制,更能够准确反应土壤深度在0~10cm、10cm~20cm的土壤水分值,尤其与10cm~20cm土壤水分值更为贴近。 相似文献
19.
20.
青海省东部农业区“十年九旱”,“春旱年年有”,对农业生产的影响非常严重,但该地区至今缺乏有效的春季干旱遥感监测方法。使用环境减灾卫星CCD数据提取青海省东部农业区农业气象观测站的垂直干旱指数(PDI),拟合其与不同深度土壤水分的关系模型,各模型的无偏相关系数均在0.7以上;其中PDI与0~20 cm土壤相对湿度关系模型(y=-489.00x+188.78)的拟合效果最好(无偏相关系数为0.7985)。该模型反演的湟源农业气象观测站固定观测地段的土壤水分时间变化序列与人工测量值的时间变化序列,在趋势变化上较为一致。2013年西宁农区的春季干旱监测中,该模型监测结果显示:发生干旱的地区主要出现在大通河谷地和湟水谷地,湟源农区的土壤旱情在整个西宁农区的土壤旱情发展中最为严重,监测结果与实际旱情分布地区一致。 相似文献