首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active load reduction strategies such as individual pitch control (IPC) and trailing edge flap (TEF) actuation present ways of reducing the fatigue loads on the blades of wind turbines. This may enable development of lighter blades, improving the performance, cost effectiveness and viability of future multi‐megawatt turbine designs. Previous investigations into the use of IPC and TEFs have been limited to turbines with ratings up to 5 MW and typically investigate the use of these load reduction strategies on a single turbine only. This paper extends the design, implementation and analysis of individual pitch and TEFs to a range of classically scaled turbines between 5 and 20 MW. In order to avoid designing controllers which favour a particular scale, identical scale‐invariant system identification and controller design processes are applied to each of the turbines studied. Gain‐scheduled optimal output feedback controllers are designed using identified models to target blade root load fluctuations at the first and second multiples of the rotational frequency using IPC and TEFs respectively. The use of IPC and TEFs is shown in simulations to provide significant reductions in fatigue loads at the blade root. Fatigue loads on non‐rotating components such as the yaw bearing and tower root (yaw moment) are also reduced with the use of TEFs. Individual pitch performance is seen to be slightly lower on larger turbines, potentially due to a combination of reduced actuator bandwidth and movement of the rotational frequency of larger turbines into a more energetic part of the turbulent spectrum. However, TEF performance is consistent irrespective of scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
H. Namik  K. Stol 《风能》2010,13(1):74-85
Floating wind turbines offer a feasible solution for going further offshore into deeper waters. However, using a floating platform introduces additional motions that must be taken into account in the design stage. Therefore, the control system becomes an important component in controlling these motions. Several controllers have been developed specifically for floating wind turbines. Some controllers were designed to avoid structural resonance, while others were used to regulate rotor speed and platform pitching. The development of a periodic state space controller that utilizes individual blade pitching to improve power output and reduce platform motions in above rated wind speed region is presented. Individual blade pitching creates asymmetric aerodynamic loads in addition to the symmetric loads created by collective blade pitching to increase the platform restoring moments. Simulation results using a high‐fidelity non‐linear turbine model show that the individual blade pitch controller reduces power fluctuations, platform rolling rate and platform pitching rate by 44%, 39% and 43%, respectively, relative to a baseline controller (gain scheduled proportional–integral blade pitch controller) developed specifically for floating wind turbine systems. Turbine fatigue loads were also reduced; tower side–side fatigue loads were reduced by 39%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the results of field tests using linear individual pitch control (LIPC) on the two‐bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two‐bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency [e.g., the once‐per‐revolution (1P) frequency], which made it only applicable in above‐rated wind turbine operating conditions. In this study, LIPC is extended to below‐rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. The field‐test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below‐rated and above‐rated operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, the conventional individual pitch control (IPC) strategy for wind turbines is reviewed, and a linear IPC strategy for two‐bladed wind turbines is proposed. The typical approach of IPC for three‐bladed rotors involves a multi‐blade coordinate (MBC) transformation, which transforms measured blade load signals, i.e., signals measured in a rotating frame of reference, to signals in a fixed non‐rotating frame of reference. The fixed non‐rotating signals, in the so‐called yaw and tilt direction, are decoupled by the MBC transformation, such that single‐input single‐output (SISO) control design is possible. Then, SISO controllers designed for the yaw and tilt directions provide pitch signals in the non‐rotating frame of reference, which are then reverse transformed to the rotating frame of reference so as to obtain the desired pitch actuator signals. For three‐bladed rotors, the aforementioned method is a proven strategy to significantly reduce fatigue loadings on pitch controlled wind turbines. The same MBC transformation and approach can be applied to two‐bladed rotors, which also results in significant load reductions. However, for two‐bladed rotors, this MBC transformation is singular and therefore, not uniquely defined. For that reason, a linear non‐singular coordinate transformation is proposed for IPC of two‐bladed wind turbines. This transformation only requires a single control loop to reduce the once‐per‐revolution rotating blade loads (‘1P’ loads). Moreover, all harmonics (2P, 3P, etc.) in the rotating blade loads can be accounted for with only two control loops. As in the case of the MBC transformation, also the linear coordinate transformation decouples the control loops to allow for SISO control design. High fidelity simulation studies on a two‐bladed wind turbine without a teetering hub prove the effectiveness of the concept. The simulation study indicates that IPC based on the linear coordinate transformation provides similar load reductions and requires similar pitch actuation compared with the conventional IPC approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Individual pitch control (IPC) provides an important means of attenuating harmful fatigue and extreme loads upon the load bearing structures of a wind turbine. Conventional IPC architectures determine the additional pitch demand signals required for load mitigation in response to measurements of the flap‐wise blade‐root bending moments. However, the performance of such architectures is fundamentally limited by bandwidth constraints imposed by the blade dynamics. Seeking to overcome this problem, we present a simple solution based upon a local blade inflow measurement on each blade. Importantly, this extra measurement enables the implementation of an additional cascaded feedback controller that overcomes the existing IPC performance limitation and hence yields significantly improved load reductions. Numerical demonstration upon a high‐fidelity and nonlinear wind turbine model reveals (1) 60% reduction in the amplitude of the dominant 1P fatigue loads and (2) 59% reduction in the amplitude of extreme wind shear‐induced blade loads, compared with a conventional IPC controller with the same robust stability margin. This paper therefore represents a significant alternative to wind turbine IPC load mitigation as compared with light detection and ranging‐based feedforward control approaches.  相似文献   

6.
E. A. Bossanyi 《风能》2005,8(4):481-485
Previous work has demonstrated that significant reductions in fatigue loading on a wind turbine can be achieved by using individual pitch control, in which the pitch of each blade is adjusted individually, in response to measured loads. The asymmetrical out‐of‐plane rotor load is measured and an additional pitch action (dominated by the rotational frequency of the rotor) is calculated for each blade in order to minimize this load. This results in the near‐elimination of the dominant once‐per‐revolution (‘1P’) peak in the out‐of‐plane load spectrum seen by the rotating components, and fatigue loads can be reduced by 20%–40%. The load reduction is also transferred to the nacelle and tower, but here it is the low‐frequency loads which are removed, resulting in a load reduction of a few per cent at best, since the fatigue on the fixed components is dominated by the peak at the blade passing frequency (‘3P’ for a three‐bladed turbine), which is largely unaffected by the individual pitch control action. This article demonstrates a relatively straightforward addition to the individual pitch control algorithm which is capable of reducing the dominant load peak on the fixed components, resulting in significant fatigue load reductions on the whole structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
For the cost per kilowatt hour to be decreased, the trend in offshore wind turbines is to increase the rotor diameter as much as possible. The increasing dimensions have led to a relative increase of the loads on the wind turbine structure; thus, it is necessary to react to disturbances in a more detailed way, e.g. each blade separately. The disturbances acting on an individual wind turbine blade are to a large extent deterministic; for instance, tower shadow, wind shear, yawed error and gravity are depending on the rotational speed and azimuth angle and will change slowly over time. This paper aims to contribute to the development of individually pitch‐controlled blades by proposing a lifted repetitive controller that can reject these periodic load disturbances for modern fixed‐speed wind turbines and modern variable‐speed wind turbines operating above‐rated. The performance of the repetitive control method is evaluated on the UPWIND 5 MW wind turbine model and compared with typical individual pitch control. Simulation results indicate that for relatively slow changing periodic wind disturbances, this lifted repetitive control method can significantly reduce the vibrations in the wind turbine structure with considerably less high‐frequent control action. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on the problem of extreme wind gust and direction change recognition (EG&DR) and control (EEC). An extreme wind gust with direction change can lead to large loads on the turbine (causing fatigue) and unnecessary turbine shutdowns by the supervisory system caused by rotor overspeed. The proposed EG&DR algorithm is based on a non‐linear observer (extended Kalman filter) that estimates the oblique wind inflow angle and the blade effective wind speed signals, which are then used by a detection algorithm (cumulative sum test) to recognize extreme events. The non‐linear observer requires that blade root bending moments measurements (in‐plane and out‐of‐plane) are available. Once an extreme event is detected, an EEC algorithm is activated that: (i) tries to prevent the rotor speed from exceeding the overspeed limit by fast collective blade pitching; and (ii) reduces 1p blade loads by means of individual pitch control algorithm, designed in an ? optimal control setting. The method is demonstrated on a complex non‐linear test turbine model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady‐state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level. In inflows with high levels of turbulence, the observed blade fatigue load reductions are small, whereas the blade fatigue loads are reduced by 20% at low turbulence levels. For both deterministic and turbulent inflows, it is seen that the blade load reductions are penalized by increased load variations on the non‐rotating turbine parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This work is concerned with the design of wind turbine blades with bend‐twist‐to‐feather coupling that self‐react to wind fluctuations by reducing the angle of attack, thereby inducing a load mitigation effect. This behavior is obtained here by exploiting the orthotropic properties of composite materials by rotating the fibers away from the pitch axis. The first part of this study investigates the possible configurations for achieving bend‐twist coupling. At first, fully coupled blades are designed by rotating the fibers for the whole blade span, and a best compromise solution is found to limit weight increase by rotations both in the spar caps and in the skin. Next, partially coupled blades are designed where fibers are rotated only on the outboard part of the blade, this way achieving good load mitigation capabilities together with weight savings. All blades are designed with a multilevel constrained optimization procedure, on the basis of combined cross‐sectional, multibody aero‐servo‐elastic and three‐dimensional finite element models. Finally, the best configuration of the passive coupled blade is combined with an active individual pitch controller. The synergistic use of passive and active load mitigation technologies is shown to allow for significant load reductions while limiting the increase in actuator duty cycle, thanks to the opposite effects on this performance metric of the passive and active control solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
To enable further growth of wind turbine dimensions and rated power, it is essential to decrease structural loads that wind turbines experience. Therefore a great portion of research is focused on control algorithms for reduction of wind turbine structural loads, but typically wind turbine rotor is considered to be perfectly symmetrical, and therefore such control algorithms cannot reduce structural loads caused by rotor asymmetries. Furthermore, typical approach in the literature is to use blade load measurements, especially when higher harmonics of structural loads are being reduced. In this paper, improvements to standard approach for reduction of structural loads are proposed. First, control algorithm capable of reducing structural loads caused by rotor asymmetries is developed, and then appropriate load transformations are introduced that enable presented control algorithms to use load measurements from various wind turbine components. Simulation results show that proposed control algorithm is capable of reducing structural loads caused by rotor asymmetries.  相似文献   

12.
Fiona Dunne  Lucy Y. Pao 《风能》2016,19(12):2153-2169
In above‐rated wind speeds, the goal of a wind turbine blade pitch controller is to regulate rotor speed while minimizing structural loads and pitch actuation. This controller is typically feedback only, relying on a generator speed measurement, and sometimes strain gages and accelerometers. A preview measurement of the incoming wind speed (from a turbine‐mounted lidar, for example) allows the addition of feedforward control, which enables improved performance compared with feedback‐only control. The performance improvement depends both on the amount of preview time available in the wind speed measurement and the coherence between the wind measurement and the wind that is actually experienced by the turbine. We show how to design a collective‐pitch optimal controller that takes both of these factors into account. Simulation results show significant improvement compared with baseline controllers and are well correlated with linear model‐based results. Linear model‐based results show the benefit of preview measurements for various preview times and measurement coherences. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The reduction of structural loads is becoming an important objective for the wind turbine control system due to the ever‐increasing specifications/demands on wind turbine rated power and related growth of turbine dimensions. Among various control algorithms that have been researched in recent years, the individual pitch control has demonstrated its effectiveness in wind turbine load reduction. Since the individual pitch control, like other load reduction algorithms, requires higher levels of actuator activity, one must take actuator constraints into account when designing the controller. This paper presents a method for the inclusion of such constraints into a predictive wind turbine controller. It is shown that the direct inclusion of constraints would result in a control problem that is nonconvex and difficult to solve. Therefore, a modification of the constraints is proposed that ensures the convexity of the control problem. Simulation results show that the developed predictive control algorithm achieves individual pitch control objectives while satisfying all imposed constraints.  相似文献   

14.
The trend with offshore wind turbines is to increase the rotor diameter as much as possible to decrease the costs per kilowatt‐hour. The increasing dimensions have led to the relative increase of the loads on the wind turbine structure. Because of the increasing rotor size and the spatial load variations along the blade, it is necessary to react to turbulence in a more detailed way; each blade separately and at several separate radial distances. In this paper, a proof of concept study is performed to show the feasibility of the load alleviation abilities of a ‘Smart’ blade, i.e. a blade equipped with a number of control devices that locally change the lift profile on the blade, combined with appropriate sensors and feedback controllers. Theoretical and experimental models are developed of a scaled non‐rotating rotor blade which is equipped with two trailing edge flaps and strain sensors to facilitate feedback control. A pitch actuator is used to induce disturbances with a similar character as a gust or turbulence. A feedback controller based on classical loop shaping is designed that minimizes the root bending moment in the flapping direction. We show that with appropriate control techniques, the loads for periodic disturbances and for turbulence generated disturbances can be reduced up to 90 and 55%, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
E. A. Bossanyi 《风能》2003,6(2):119-128
If a pitch‐regulated wind turbine has individual pitch actuators for each blade, the possibility arises to send different pitch angle demands to each blade. The possibility of using this as a way of reducing loads has been suggested many times over the years, but the idea has yet to gain full commercial acceptance. There are a number of reasons why this situation may be set to change, and very significant load reductions can result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
针对强非线性、强耦合的海上漂浮式风电机组动力学系统,提出一种基于二阶滑模的统一变桨控制策略,解决受海浪风速等随机干扰引起浮式支撑平台运动而产生的疲劳结构载荷及功率波动问题。构建漂浮式风电机组的不确定仿射非线性模型,基于风电机组“额定转速”设计积分滑模面,此“额定转速”不再是恒定值,而是取决于平台纵摇速度的变量,基于超螺旋算法实现二阶滑模变桨控制律。采用FAST和Matlab/Simulink联合仿真,所提出的方案与传统PI控制相比,对稳定高风速时风力发电机功率,抑制浮式支撑平台运动及减少叶根载荷具有更好的控制作用,对塔基也有较好的减载作用。  相似文献   

17.
The use of upstream wind measurements has motivated the development of blade‐pitch preview controllers for improving rotor speed tracking and structural load reduction beyond that achievable via conventional feedback control. Such preview controllers, typically based upon model predictive control (MPC) for its constraint handling properties, alter the closed‐loop dynamics of the existing blade‐pitch feedback control system. This can result in a deterioration of the robustness properties and performance of the existing feedback control system. Furthermore, performance gains from utilising the upcoming real‐time measurements cannot be easily distinguished from the feedback control, making it difficult to formulate a clear business case for the use of preview control. Therefore, the aim of this work is to formulate a modular MPC layer on top of a given output‐feedback blade‐pitch controller, with a view to retaining the closed‐loop robustness and frequency‐domain performance of the latter. The separate nature of the proposed controller structure enables clear and transparent quantification of the benefits gained by using preview control, beyond that of the underlying feedback controller. This is illustrated by results obtained from high‐fidelity closed‐loop turbine simulations, showing the proposed control scheme incorporating knowledge of the oncoming wind and constraints achieved significant 43% and 30% reductions in the rotor speed and flap‐wise blade moment standard deviations, respectively. Additionally, the chance of constraint violations on the rotor speed decreased remarkably from 2.15% to 0.01%, compared to the nominal controller. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
E. A. Bossanyi 《风能》2000,3(3):149-163
This article reviews the design of algorithms for wind turbine pitch control and also for generator torque control in the case of variable speed turbines. Some recent and possible future developments are discussed. Although pitch control is used primarily to limit power in high winds, it also has a significant effect on various loads. Particularly as turbines become larger, there is increasing interest in designing controllers to mitigate loads as far as possible. Torque control in variable speed turbines is used primarily to maximize energy capture below rated wind speed and to limit the torque above rated. Once again there are opportunities for designing these controllers so as to mitigate certain loads. In addition to improving the design of the control algorithms, it is also possible to use additional sensors to help the controller to achieve its objectives more effectively. The use of additional actuators in the form of individual pitch controllers for each blade is also discussed. It is important to be able to quantify the benefits of any new controller. Although computer simulations are useful, field trials are also vital. The variability of the real wind means that particular care is needed in the design of the trials. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
With the trend of increasing wind turbine rotor diameters, the mitigation of blade fatigue loadings is of special interest to extend the turbine lifetime. Fatigue load reductions can be partly accomplished using individual pitch control (IPC) facilitated by the so‐called multiblade coordinate (MBC) transformation. This operation transforms and decouples the blade load signals in a yaw‐axis and tilt‐axis. However, in practical scenarios, the resulting transformed system still shows coupling between the axes, posing a need for more advanced multiple input multiple output (MIMO) control architectures. This paper presents a novel analysis and design framework for decoupling of the nonrotating axes by the inclusion of an azimuth offset in the reverse MBC transformation, enabling the application of simple single‐input single‐output (SISO) controllers. A thorough analysis is given by including the azimuth offset in a frequency‐domain representation. The result is evaluated on simplified blade models, as well as linearizations obtained from the NREL 5–MW reference wind turbine. A sensitivity and decoupling assessment justify the application of decentralized SISO control loops for IPC. Furthermore, closed‐loop high‐fidelity simulations show beneficial effects on pitch actuation and blade fatigue load reductions.  相似文献   

20.
Wind turbine controllers are commonly designed on the basis of low‐order linear models to capture the aeroelastic wind turbine response due to control actions and disturbances. This paper characterizes the aeroelastic wind turbine dynamics that influence the open‐loop frequency response from generator torque and collective pitch control actions of a modern non‐floating wind turbine based on a high‐order linear model. The model is a linearization of a geometrically non‐linear finite beam element model coupled with an unsteady blade element momentum model of aerodynamic forces including effects of shed vorticity and dynamic stall. The main findings are that the lowest collective flap modes have limited influence on the response from generator torque to generator speed, due to large aerodynamic damping. The transfer function from collective pitch to generator speed is affected by two non‐minimum phase zeros below the frequency of the first drivetrain mode. To correctly predict the non‐minimum phase zeros, it is essential to include lateral tower and blade flap degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号