首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, orange G dye was efficiently removed from aqueous solution by ultrafiltration (UF) mem-brane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incor-poration, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacrificing the permeation flux of the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the en-hanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m 2·h 1. The pre-sent study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.  相似文献   

2.
BACKGROUND: In this study, a plug‐flow A2O (anaerobic/anoxic/oxic) reactor, with a working volume of 52.5 L, was employed to investigate the performance of biological nutrients removal and microbial population variations when treating low C/N ratio domestic wastewater. RESULTS: Results showed that TN removal was significantly affected by the shortage of carbon source while phosphorus removal was only slightly affected. The effluent soluble orthophosphate‐phosphorus (SOP) concentration was lower than 0.50 mg L?1 but the TN concentration was over 20 mg L?1 when the C/N ratio was 4.43. There was denitrifying phosphorus removal in the anoxic reactor and this was enhanced by increasing the volume ratio of anoxic reactor and maintaining appropriate mixed liquor recycle rate. More than 60% of the SOP were removed in anoxic reactors by denitrifying phosphorus removal when the volume ratio of anaerobic/anoxic/oxic was 1/1.4/1.6 and the mixed liquor recycle rate was 250%. The TN concentration of effluent decreased to 11.34 mg L?1 and SOP concentration was still lower than 0.5 mg L?1 in this condition. The main microorganisms found in the process by polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and the functional biodiversity are discussed. CONCLUSION: Traditional design and operating parameters of A2O are not appropriate for treating low C/N wastewater. Enhancing the denitrifying phosphorus removal ratio in an A2O process is an effective way to increase the removal rate of N and P from low C/N wastewater. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Due to the low concentration of silver in water, most of the cellulose adsorbents exhibited low removal efficiency, which greatly limited their practical applications. Herein, a cellulose aerogel modified by thiosemicarbamide (CAT) was fabricated for reducing and adsorbing silver ions from low concentration wastewater. The characterization results concluded that CAT owned a three-dimensional spongy structure with many circular microspheres and a better specific surface area (19.37 m2 g−1), as well as the functional groups of ─C═N+─H and ─(C═S)─N. The static batch adsorption experiments demonstrated that CAT could reached the maximum removal percentage of 94.94% and adsorption capacity of 42.12 mg g−1 under the initial concentration of Ag(I) was 15 mg L−1 and the pH value was 7. Meanwhile, the adsorption of Ag(I) on CAT was second-order reaction, and the Langmuir model could better fit the adsorption process. In addition, CAT exhibited wide pH values (1–9) adaptability and excellent adsorption performance for silver through electrostatic interaction, chelation, and reduction. This study probably provides a new method as well as important experimental data and theoretical reference for the removal of silver ions and other metals.  相似文献   

4.
BACKGROUND: The aim of this study was to evaluate the ammonium nitrogen removal performance of algae culture Chlorella vulgaris in a novel immobilized photobioreactor system under different operating conditions and to determine the biokinetic coefficients using the Stover–Kincannon model. RESULTS: The photobioreactor was continuously operated at different initial ammonium nitrogen concentrations (NH4‐N0 = 10–48 mg L−1), hydraulic retention times (HRT = 1.7–5.5 days) and nitrogen/phosphorus ratios (N/P = 4/1–13/1). Effluent NH4‐N concentrations varied between 2.1 ± 0.5 mg L−1 and 26 ± 1.2 mg L−1 with increasing initial NH4‐N concentrations from 10 ± 0.6 mg L−1 to 48 ± 1.8 mg L−1 at θH = 2.7 days. The maximum removal efficiency was obtained as 79 ± 4.5% at 10 mg L−1 NH4‐N concentration. Operating the system for longer HRT improved the effluent quality, and the percentage removal increased from 35 ± 2.4% to 93 ± 0.2% for 20 mg L−1 initial NH4‐N concentration. The N/P ratio had a substantial effect on removal and the optimum ratio was determined as N/P = 8/1. Saturation value constant, and maximum substrate utilization rate constant of the Stover–Kincannon model for ammonium nitrogen removal by C. vulgaris were determined as KB = 10.3 mg L−1 d−1, Umax = 13.0 mg L−1 day−1, respectively. CONCLUSION: Results indicated that the algae‐immobilized photobioreactor system had an effective nitrogen removal capacity when the operating conditions were optimized. The optimal conditions for the immobilized photobioreactor system used in this study can be summarized as HRT = 5.5 days, N/P = 8 and NH4‐N0 = 20 mg L−1 initial nitrogen concentration to obtain removal efficiency greater than 90%. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
J.C. Zhang  Y.H. Wang  J.Y. Hu  W.J. Ng 《Desalination》2005,174(3):247-256
This laboratory scale study investigated the effectiveness of ultrafiltration (UF) technology for treatment of refinery wastewater using powdered activated carbons (PACs) and coagulant. Flux decline, removal rates of total organic compounds (TOCs) and the possibilities of membrane cleaning during intermittent backwashing were studied. Addition of two kinds of typical PACs, PACs-1 and PACs-2, showed that the UF unit performance by adding PACs-2 was better than that of PACs-1. Suitable amounts were 20 mg.L−1. When different kinds of coagulant, HYM, HY-3, HYC-601 and HCA, were added into the wastewater samples, respectively, it indicated that the HCA system was well resistant to membrane fouling. Investigation also showed that the UF unit performance could be significantly improved by simultaneously adding 15 mg.L−1 of PACs-2 and 0.8 ml.L−1 of HCA into the system. The removal rates of TOCs in the wastewater were over 99%.  相似文献   

6.
Direct Red 31, Acid Black 1 and Acid Green 16 belonging to diazo and triphenylmethane classification of dye chemicals are widely used during the manufacture of leather. The spent dyestuffs in wastewater escape biological treatment owing to their poor biodegradability. An adsorption procedure was used in this study for the removal of dyes from aqueous solution using Rice Bran‐based Activated Carbon (RBAC). The molecular weight of the dye chemicals, the mass of RBAC and the diameter of RBAC particle had positive effects on the rate of adsorption. Initial concentration of dye chemicals, pH of the dye solution and temperature of adsorption showed a negative impact on adsorption. The enthalpies of adsorption for Direct Red 31, Acid Black 1 and Acid Green 16 were −32.1,−23.4 and −21.7 KJ mol−1 respectively, indicating the adsorption was an exothermic physical process. The entropies of adsorption for Direct Red 31, Acid Black 1 and Acid Green 16 were −96.94,−59.92 and −26.96 J K−1 mol −1 respectively, suggesting that RBAC favours the adsorption process. © 1999 Society of Chemical Industry  相似文献   

7.
Future challenges for the wastewater treatment will be the compliance with low discharge limits for phosphorus and the recovery of phosphorus from wastewater. Under favourable wastewater conditions and optimal process operation the conventional P‐elimination techniques can reliably and economically achieve phosphorus discharge values of approximately 0.5 mg L–1 Ptotal. Lower phosphorus discharge values are reached by optimization of available or implementation of advanced P‐elimination technologies. The possibilities for the phosphorus recovery are indicated on the basis of several processes. The present P‐elimination technology influences strongly the choice of the P‐recovery technique and the P‐recovery degree. On the other hand, the P‐recovery techniques can influence the operation of the wastewater treatment plant.  相似文献   

8.
This paper presents experimental results from the implementation of two measures aimed at reducing the nitrogen concentration in a tannery wastewater. Specifically, this research has focused on the wastewater from the deliming/bating operations. The proposed measures are the replacement of ammonium salts by carbon dioxide in the deliming process and the reuse of wastewater and chemicals after membrane filtration of the deliming/bating liquor. The experimental study covered different wastewater pretreatment alternatives and experiments with two membranes (with different separation properties): one in the range of microfiltration (MF) and one in the range of the ultrafiltration (UF). Results of the pretreatment study indicated that neither settling nor protein precipitation were feasible. Only a security filtration prior to membrane filtration was recommended. The tested MF membrane was selected due to the higher flux (around 25 L/(m2 h)) in comparison with the UF membrane. The MF permeate was successfully reused in the deliming/bating process. The delimed leather quality was excellent according to both visual and organoleptic inspection from process technicians and phenolphthalein test, confirming the technical feasibility of the proposal. Globally, the implementation of the above mentioned two measures resulted in 53% total nitrogen reduction.  相似文献   

9.
The laboratory scale anaerobic–anoxic–aerobic (A2O) process fed with synthetic brewage wastewater was designed to investigate the effects of changing feed C/P ratio on the performance of biological nutrient removal (BNR) processes. In the experiment, the influent chemical oxygen demand (COD) concentration was kept at approximately 300 mg L?1 while the total phosphorus concentration was varied to obtain the desired C/P ratio. Results showed that when the C/P ratio was lower than 32, phosphorus removal efficiency increased as C/P ratio increased linearly, while when the C/P ratio was higher than 32, the P removal efficiency was maintained at 90–98%, and effluent P concentration was lower than 0.5 mg L?1. However, regardless of the C/P ratio, excellent COD removal (90% or higher) and good total nitrogen removal (75–84%) were maintained throughout the experiments. It was also found that very good linear correlation was obtained between COD uptake per unit P released in the anaerobic zone and C/P ratio. In addition, the P content in the wasted activated sludge increased with the decrease in the C/P ratio. Based on the results, it was recommended that the wastewater C/P ratio and its effects be incorporated into BNR design and operational procedures, appropriate C/P ratios were used to achieve the effluent treatment goals. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
《Desalination》2006,187(1-3):271-282
Treatment technology for water recycling encompasses a vast number of options. Membrane processes are regarded as key elements of advanced wastewater reclamation and reuse schemes and are included in a number of prominent schemes world-wide, e.g. for artificial groundwater recharge, indirect potable reuse as well as for industrial process water production. Membrane bioreactors (MBRs) are a promising process combination of activated sludge treatment and membrane filtration for biomass retention. This paper will provide an overview of the status of membrane bioreactor applications in municipal wastewater reclamation and reuse in Europe and will depict their potential role in promoting more sustainable water use patterns. Particular attention will be paid to the impact of MBR technology on emerging pollutants. A case study will be presented on a full-scale MBR plant for municipal wastewater which is operated by Aquafin in Belgium.  相似文献   

11.
X. Zheng  M. Jekel 《Desalination》2009,249(2):591-91
Ultrafiltration (UF) of treated municipal wastewater has been used to produce high-quality reuse water for different applications. However, without pre-treatment, secondary treated wastewater effluent shows high fouling potential and reduces the performance of UF membrane filtration significantly. To remove foulants prior to UF, slow sand filtration (SSF) was investigated in the present work. Two pilot-scale slow sand filters were operated in tandem with UF. The performance of the UF plant was improved to a large extent by delivering slow sand filtrate compared to direct secondary effluent filtration. Removal of common organic fouling indicators (i.e., proteins, carbohydrates, and biopolymers) by SSF was significantly higher at 0.25 m/h versus 0.5 m/h filter loading rate. Results of a comparative analysis of SSF effluent characteristics and UF performance showed that the biopolymer content detected by size exclusion chromatography displayed a good correlation with the filterability of corresponding water sample by UF, while photo-metrically detected proteins and polysaccharides did not present any relationship with UF performance.  相似文献   

12.
A new composite of cobalt ferrite and Tragacanth gum (TG) was developed and applied to remove methyl orange (MO) and methyl red (MR) from wastewater samples simultaneously. The results showed that the presence of TG improved the capability of cobalt ferrite in removing the pollutants in considerably. The adsorption properties and surface morphology of the sorbent were compared with those of bare cobalt ferrite, TG, and TG grafted copolymer. The properties of the adsorbents were studied using Fourier transform infrared, scanning electron microscope, transmission electron microscope, X-ray diffraction, and vibrating sample magnetometer, and the effects of different factors such as the amount of the adsorbent, sample pH, contact time, and initial concentration were also evaluated and optimized through response surface methodology using central composite design. The optimal conditions for the adsorption of both dyes (100 mg L−1 as the concentration) were pH of 4.0, adsorbent dose of 0.5 mg mL−1, and contact time of 110 min. Under these conditions, the MO and MR adsorption processes were found to follow pseudo-second-order kinetic model. The equilibrium adsorption data followed the Langmuir isotherm and the highest adsorption capacity was determined to be 336 and 387 mg g−1 for MO and MR, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48605.  相似文献   

13.
焦化废水深度处理工业应用研究   总被引:5,自引:0,他引:5  
由于焦化废水成分复杂、难以降解,经生化处理后使用常规处理方法其出水很难达到回用标准,采用砂滤-超滤-纳滤组合工艺对焦化废水生化出水进行深度处理,出水CODCr的平均质量浓度为37.77 mg/L,NH3-N的平均质量浓度为2.71 mg/L,色度、SS去除效果明显,达到GB 50335-2002《污水再生利用工程设计规范》中循环冷却水系统补充水水质控制指标的要求.  相似文献   

14.
《Ceramics International》2020,46(3):2960-2968
MXene and metal organic framework (MOF) were used as the main adsorbents to remove synthetic dyes from model wastewater. Methylene blue (MB) and acid blue 80 (AB) were used as the model cationic and anionic synthetic dyes, respectively. To investigate the physicochemical properties of the adsorbents used, we carried out several characterizations using microscopy, powder X-ray diffraction, a porosimetry, and a zeta potential analyzer. The surface area of MXene and MOF was 9 and 630 m2 g−1, respectively, and their respective isoelectric points were approximately pH 3 and 9. Thus, MXene and MOF exhibited high capacity for MB (~140 mg g−1) and AB (~200 mg g−1) adsorption, respectively due to their electrostatic attractions when the concentrations of the adsorbents and adsorbates were 25 and 10 mg L−1. Furthermore, the MOF was able to capture the MB due mainly to hydrophobic interactions. In terms of the advantages of each adsorbent according to our experimental results, MXene exhibited fast kinetics and high selectivity. Meanwhile, the MOF had a high adsorption capacity for both MB and AB. The adsorption mechanisms of both adsorbents for the removal of MB and AB were clearly explained by the results of our analyses of solution pH, ionic strength, and the presence of divalent cation, anion, or humic acids, as well as other characterizations (i.e., Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy). According to our results, MOF and MXene can be used as economical treatments for wastewater containing organic pollutants regardless of charge (e.g., MB and AB), and positively charged one (e.g., MB), respectively.  相似文献   

15.
稠油污水膜法资源化预处理技术研究   总被引:3,自引:0,他引:3  
韩红  王海峰  李阳  包木太 《水处理技术》2012,38(7):89-91,94
为解决稠油污水膜法资源化的预处理问题,采用气浮和生物接触氧化除油、砂滤除悬浮物和超滤去除大分子污染物的工艺作为反渗透的预处理工艺。结果表明,气浮可有效去除悬浮油,保证生化进水含油量小于20 mg/L;生物接触氧化可以将含油量降到1 mg/L以下,COD稳定在100 mg/L以下;砂滤的最佳过滤压力为0.6 MPa,砂滤出水的悬浮物小于5 mg/L;超滤的运行压力为0.3 MPa,超滤出水SDI小于3,浊度小于0.2 NTU。  相似文献   

16.
The aim of this study is to explore naturally occurring sorbents that have high affinity for heavy metal treatment. In this respect, series of polymer‐clay composite beads that consists of Na‐alginate and montmorillonite clay were prepared using CaCl2 as crosslinker. The prepared composite bead was characterized by scanning electron microscope (SEM). Removal of lead from aqueous solution using this bead was then studied in batch adsorption experiments. The amount of lead removed was found to increase as the percent of Na‐alginate increase in the composite beads. The experimental results also showed that the equilibrium contact time was obtained within ∼ 100 min with (t1/2) of 50% adsorption in less than 10 min. Lead adsorption was found to be strongly pH‐dependent and display a maximum uptake capacity (244.6 mg/g) at pH 6 and minimum uptake (76.6 mg/g) at pH 1. Maximum lead adsorption was found to increase with increasing initial lead concentration in the feed solution and with decreasing temperature of experiment. Based on alginate‐montmorillonite beads packed columns, a highly efficient method for Pb(II) removal from aqueous solution was developed. The effect of flow rate on adsorption of 100 mg/L Pb(II) in the packed‐bed column was investigated by changing the flow rate between 0.5 and 2.5 mL min−1. The recovery of 100 mg/L Pb(II) in the packed‐bed column was found to be 100% at flow rates 0.5 and 1 mL min−1 then lowered to be 93% and 84% at flow rates 1.5 and 2.5 mL min−1, respectively. The effect of Pb(II) flow concentration ranging from 10 to 1000 mg/L on the adsorption of lead ions at constant flow rate 1.0 mL min−1 was also studied using column procedure. Technical feasibility for the uses of the prepared composite beads for the treatment of actual polluted wastewater samples collected from some industrial cities in Egypt was investigated. The evaluation of the system was performed by a complete analysis of heavy metals in the wastewater samples before and after the treatment process. The results showed a promising possibility for producing wastewater of better quality using such prepared beads. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Humic acid (HA) was carbonized at 300, 400 and 500 °C and then functionalized with 1 wt%–12 wt% Fe(III) respectively [CHA300/400/500-Fe(III)]. Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline (TC: 25 mg·L−1) was studied. The adsorption equilibrium time for CHA400-Fe(III) to TC was 6 h faster and the adsorption removal efficiency (Re) was two times higher than that of HA/CHA. The adsorption Re of CHA400-Fe(III) loaded 10% iron [CHA400-(10%)Fe(III)] to TC could reach 99.8% at 8 h and still kept 80.6% after 8 cycles. The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R2 > 0.99), indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents. The main adsorption mechanisms of TC were complexation Fe(III) and hydrophobic distribution. Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(III) at lowly pH(2) and highly pH(8–10) respectively, leaded to the relatively low adsorption capacity and more notable influence of ion concentration. When the pH was between 4 and 8, TC mainly existed in neutral molecules (TCH2), so the influence of ion concentration was not obvious. The dynamic adsorption results showed that the CHA400-(10%)Fe(III) could continuously treat about 2.4 L TC(27 mg·L−1) wastewater with the effluent concentration as low as 0.068 mg·L−1. Our study suggested a broad application prospect of a new, effective, low-cost and environment-friendly adsorbent CHA400-(10%)Fe(III) for treatment of low-concentration TC polluted wastewater.  相似文献   

18.
循环生物曝气滤池和过滤组合工艺处理炼油轻度污染废水   总被引:2,自引:1,他引:1  
谢文玉  陈建军  钟理  钟华文 《化工学报》2008,59(5):1251-1256
采用新型的循环生物曝气滤池(CBAF)和过滤组合工艺对炼油轻度污染废水进行净化回用工业试验。研究了填料粒径和高度、水力停留时间和溶解氧浓度对CBAF工艺处理效果的影响。结果表明CBAF工艺具有碳化作用、硝化作用和过滤作用。CBAF工艺净化该废水适宜的操作条件为:水力停留时间100 min,溶解氧浓度3 mg·L-1左右,反冲洗周期2~3 d。炼油轻度污染废水经该组合工艺处理后,COD、石油类污染物、NH3-N和SS平均去除率分别为62.6%、71.7%、92.6%和97.0%,出水COD、石油类污染物、NH3-N和SS平均质量浓度分别为14.4 mg·L-1、0.75 mg·L-1、0.49 mg·L-1 和2.4 mg·L-1,经处理后出水水质达到工业回用水要求。  相似文献   

19.
A new corrosion inhibitor was synthesized from chloroacetyl chloride, 1,3-propanediamine, and dodecyldimethyl tertiary amine. The structure of the synthesized product was characterized using Fourier transform infrared(FTIR). The critical micelle concentration (CMC) was determined from surface tension measurements. The inhibition behavior of the corrosion inhibitor for 2024 Al-Cu-Mg alloy was studied using the weight-loss method and electrochemical measurements in hydrochloric acid solution. Experimental results show: The CMC is 7.767 × 10−4 mol L−1 and IE (C pro = 1 × 10−3 mol L−1) ≈ 87.9%. The adsorption free energy is calculated to be −33.12 kJ mol−1. Therefore, the adsorption mode is more inclined to physical adsorption. When the concentration of the synthesized product is lower than the CMC, it satisfies the Langmuir adsorption model; when the concentration is higher than the CMC, it no longer follows the Langmuir adsorption model.  相似文献   

20.
The adverse effects of excessive ammonia on aquatic ecosystem have provoked the development of efficient methods for its removal. Here, we present a thermal copolymerization of melamine and sodium hydrogen carbonate and successfully introduce oxygen groups into the structure of g-C3N4, which is applied to low-concentration ammonia removal. Oxygen groups are introduced into g-C3N4 and increase its surface electron negativity. When the initial concentration of ammonia nitrogen is 18.74 mg L−1, the lowest concentration of it after adsorption is 1.43 mg L−1, and the ammonia nitrogen removal efficiency is 92.3%. The main reason for our material high performance on adsorption ammonium may be ascribed to deprotonated carboxylic acid, which has the ability to adsorb positively charged ammonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号