首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suspended, planar multistage micro thermoelectric (TE) cooler is designed using thermal network model to cool MEMS devices. Though the planar (two-dimensional) design is compatible with MEMS fabrication, its cooling performance is reduced compared to that of a pyramid (three-dimensional) design, due to a mechanically indispensable thin dielectric substrate (SiO2) and technical limit on TE film thickness. We optimize the planar, six-stage TE cooler for maximum cooling, and predict ΔTmax = 51 K with power consumption of 68 mW using undoped, patterned 4–10 μm thick co-evaporated Bi2Te3 and Sb2Te3 films. Improvement steps of the planar design for achieving cooling performance of the ideal pyramid design are discussed. The predicted performance of a fabricated prototype is compared with experimental results with good agreements.  相似文献   

2.
Thermoelectric devices are solid‐state devices. Semiconductor thermoelectric cooling, based on the Peltier effect, has interesting capabilities compared to conventional cooling systems. In this work second law analysis of thermoelectric coolers has been done with the help of exergy destruction. In the first part, performance of single‐stage thermoelectric coolers and multi stage thermoelectric coolers has been compared for same number of thermoelectric elements i.e. 50. The performance parameters considered to compare their performance are rate of refrigeration, coefficient of performance, second law efficiency and exergy destruction. In second part, multi stage thermoelectric coolers have been analyzed for three different combinations of number of elements in two stages of thermoelectric coolers. The result of the analysis shows that the performance of a multi stage thermoelectric cooler which has total 50 elements gives best performance when it has 30 elements in hotter side and 20 elements in colder side out of the three cases considered. The comparison of single‐stage thermoelectric cooler and multistage thermoelectric cooler shows that for same number of elements rate of refrigeration (ROR) of single‐stage thermoelectric cooler is much higher than that of multi stage thermoelectric cooler. The COP remains same for both of them but the peak value of cop is obtained at much lower value of current supplied in multi stage thermoelectric cooler. Exergy destruction has constant values in single stage as well as multi stage thermoelectric cooler when the two stages have equal number of elements but it decreases with increase in x. The result of comparison of multistage thermoelectric cooler for three values of x i.e. 0.5, 1, 1.5 shows that the COP, ROR and second law efficiency improve and exergy destruction degrades with increase in x and the best performance has been obtained for x = 1.5 out of the three values considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Semiconducting chalcogenide thin films have been receiving considerable attention in the recent years because of their wide applications in the various fields of science and technology. The studies of the electronic properties of semiconductors have been largely stimulated by attractive micro-electronic device applications. Among the various V–VI compounds, Bismuth Telluride (Bi2Te3) is an established low-temperature thermo electric material and is widely employed in thermoelectric generators and coolers. The present work deals with the structural and the electrical characterization of Bi2Te3 thin films vacuum deposited on well-cleaned glass substrates. A constant rate of deposition was maintained through out the process. To obtain uniform and homogeneous film thickness through out on all the substrates a rotary drive was employed. Quartz crystal thickness monitor was used to measure the thickness of the samples. From the X-ray diffractogram the Bi2Te3 films are found to be amorphous at lower thicknesses and posses hexagonal polycrystalline structure at higher thickness, having lattice parameters a=4.44 Å and c=29.40 Å. The grain size of the Bi2Te3 thin films before annealing and after annealing are found to be 100 and 160 Å, respectively. The micro-strain and the dislocation density are found to decrease after annealing. The thermogravimetry–differential thermal analysis (TG–DTA) studies revealed that the Bi2Te3 films are non-decomposable. Electrical resistivity, TCR measurements have been carried out as a function of varying temperatures in the range 303–453 K are found to show the size effect. Analyzing the size dependence of electrical resistivity it is found that the electrical resistivity is a linear function of the reciprocal of thickness of the film. The energy gap of Bi2Te3 thin film was calculated from the graph ln ρ vs. 1/T and it is found that the energy gap decreases with increasing thickness. From the negative values of TCR, it is inferred that Bi2Te3 films exhibit semiconducting behavior.  相似文献   

4.
The possibility of using thermocouples made from Bi2Te3 alloys in solar thermoelectric generators is investigated. Experiments have been carried out for two systems. The first employs a commercial thermoelectric module operating at the relatively low source temperatures that can be achieved with a flat plate collector. The second system uses an asymmetric stationary concentrator with thermocouples fabricated so as to withstand higher temperatures. Present overall efficiencies are less than 1 per cent but this could rise to about 3 per cent with improvements in the concentration system.  相似文献   

5.
Miniature thermoelectric cooler (TEC) has been considered as a promising device to achieve effective cooling in microprocessors and other small-scale equipments. To understand the performances of miniature thermoelectric coolers, three different thermoelectric cooling modules are analyzed through a three-dimensional numerical simulation. Particular attention is paid to the influence of scaling effect and Thomson effect on the cooling performance. Two different temperature differences of 0 and 10 K between the top and the bottom copper interconnectors are taken into account. In addition, three different modules of TEC, consisting of 8, 20 and 40 pairs of TEC, are investigated where a single TEC length decreases from 500 to 100 μm with the condition of fixed ratio of cross-sectional area to length. It is observed that when the number of pairs of TEC in a module is increased from 8 to 40, the cooling power of the module grows drastically, revealing that the miniature TEC is a desirable route to achieve thermoelectric cooling with high performance. The obtained results also suggest that the cooling power of a thermoelectric cooling module with Thomson effect can be improved by a factor of 5-7%, and the higher the number of pairs of TEC, the better the improvement of the Thomson effect on the cooling power.  相似文献   

6.
Flexible thermoelectric power generators fabricated by evaporating thin films on flexible fiber substrates are demonstrated to be feasible candidates for waste heat recovery. An open circuit voltage of 19.6 μV K per thermocouple junction is measured for Ni–Ag thin films, and a maximum power of 2 nW for 7 couples at ΔT = 6.6 K is measured. Heat transfer analysis is used to project performance for several other material systems, with a predicted power output of 1 μW per couple for Bi2Te3/Sb2Te3-based fiber coatings with a hot junction temperature of 100 °C. Considering the performance of woven thermoelectric cloths or fiber composites, relevant properties and dimensions of individual thermoelectric fibers are optimized.  相似文献   

7.
In this work we proposed design, fabrication and functional characterization of a very low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics ambient assisted living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15 °C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW.In the first part of work, deposition investigation Sb2Te3 and Bi2Te3 thin films alloys on Kapton HN polyimide foil by RF magnetron co-sputtering technique is discussed. Deposition parameters have been optimized to gain perfect stoichiometric ratio and high thermoelectric power factor; fabricated thermogenerator has been tested at low gradient conditioned to evaluate applications like human skin wearable power generator for ambient assisted living applications.  相似文献   

8.
Significant research in the past decade has been focused on quantitatively and qualitatively validating potential of solar thermoelectric modules to harness electricity. In the present study, we have experimentally analysed steady-state temperature variation of a spectrally selective solar absorber coating (α?=?0.954, ε?=?0.13) with variation in solar irradiation flux (concentration ratios?=?39, 50 and 65) using Fresnel lens and vacuum enclosure pressure (200?mbar to 900?mbar in steps of 100?mbar). It is observed that the experimental results so obtained go hand in hand with a COMSOL simulation model of the set-up. Further, we have carried out performance analysis of a solar thermoelectric generator (STEG) set-up enclosed in vacuum conditions equipped with Fresnel lens and absorber set-up coupled to Bi2Te3 thermoelectric module array electrically connected in series. The results depict a maximum power output of 0.91?W and a peak efficiency of 2.21% at a hot-side temperature of 642?K.  相似文献   

9.
Bi2Te3–Sb2Te3 nanostructures are gaining importance for use in thermoelectric applications following the finding that the Bi2Te3–Sb2Te3 superlattice exhibits a figure of merit, ZT = 2.4, which is higher than conventional thermoelectric materials. In this paper, thermal transport in the cross-plane direction for Bi2Te3–Sb2Te3 nanostructures is simulated using the Boltzmann transport equation (BTE) for phonon intensity. The phonon group velocity, specific heat, and relaxation time are calculated based on phonon dispersion model. The interfaces are modeled using a combination of diffuse mismatch model (DMM), and the elastic acoustic mismatch model (AMM). The thermal conductivity for the Bi2Te3–Sb2Te3 superlattice is compared with the experimental data, and the best match is obtained for specularity parameter, p, of 0.9. The present model is extended to solve for thermal transport in 2-D nanowire composite in which Sb2Te3 wires are embedded in a host material of Bi2Te3. Unlike in bulk composites, the results show a strong dependence of thermal conductivity, temperature, and heat flux on the wire size, wire atomic percentage, and interface specularity parameter. The thermal conductivity of the nanowire is found to be in the range of 0.034–0.74 depending on the atomic percentage and the value of p.  相似文献   

10.
This article presents the temperature–entropy analysis, where the Thomson effect bridges the Joule heat and the Fourier heat across the thermoelectric elements of a thermoelectric cooling cycle to describe the principal energy flows and performance bottlenecks or dissipations. Starting from the principles of thermodynamics of thermoelectricity, differential governing equations describing the energy and entropy flows of the thermoelectric element are discussed. The temperature–entropy (TS) profile in a single Peltier element is pictured for temperature dependent Seebeck coefficient and illustrated with data from commercial available thermoelectric cooler.  相似文献   

11.
The current article discussed the detail design and development of an experimental test rig to derive usable energy by utilizing the waste heat energy through a heat exchanger made of Bi2Te3 material. The accuracy including the efficiency of the fabricated device is demonstrated further by verifying the associated parameter through a simulation model (commercial finite element package, ANSYS 15.0). To imitate the waste hot air from the industry is achieved via a heat gun and fed to the test rig for the generation of thermoelectric power. The simulation model accuracy has been demonstrated by juxtaposing the associated experimental data and computational readings. Subsequently, the feasibility and optimum range of design parameters are established by comparing the experimental and the simulation data (triggered temperature difference, voltage output, and heat flux) generated at the interface of the thermoelectric power generators. In addition, the coefficient of determination (R2) value has been evaluated statistically and verified with the current experimental results for the demonstration of the relevancy. The statistical study shows the existence of the correlation between the current experimental and the simulation model. Also, the experimental result indicates the possible implementation of the newly developed system for the recovery from the waste heat either the automobile exhaust or any other kind of dissipated heat from the industries.  相似文献   

12.
Thermoelectric systems (TE) can directly convert heat to electricity and vice-versa by using semiconductor materials. Therefore, coupling between heat transfer and electric field potential is important to predict the performance of thermoelectric generator (TEG) systems. This paper develops a general two-dimensional numerical model of a TEG system using nanostructured thermoelectric semiconductor materials. A TEG with p-type nanostructured material of Bismuth Antimony Telluride (BiSbTe) and n-type Bismuth Telluride (Bi2Te3) with 0.1 vol.% Silicon Carbide (SiC) nanoparticles is considered for performance evaluations. Coupled TE equations with temperature dependant transport properties are used after incorporating Fourier heat conduction, Joule heating, Seebeck effect, Peltier effect, and Thomson effect. The effects of temperature difference between the hot and cold junctions and surface to surrounding convective on different output parameters (e.g., thermal and electric fields, power generation, thermal efficiency, and current) are studied. Selected results obtained from current numerical analysis are compared with the results obtained from analytical model available in the literature. There is a good agreement between the numerical and analytical results. The numerical results show that as temperature difference increases output power and amount of current generated increase. Moreover, it is quite apparent that convective boundary condition deteriorates the performance of TEG.  相似文献   

13.
In this paper we introduce a model and an optimization methodology for terrestrial solar thermoelectric generators (STEGs). We describe, discuss, and justify the necessary constraints on the STEG geometry that make the STEG optimization independent of individual dimensions. A simplified model shows that the thermoelectric elements in STEGs can be scaled in size without affecting the overall performance of the device, even when the properties of the thermoelectric material and the solar absorber are temperature-dependent. Consequently, the amount of thermoelectric material can be minimized to be only a negligible fraction of the total system cost. As an example, a Bi2Te3-based STEG is optimized for rooftop power generation. Peak efficiency is predicted to be 5% at the standard spectrum AM1.5G, with the thermoelectric material cost below 0.05 $/Wp. Integrating STEGs into solar hot water systems for cogeneration adds electricity at minimal extra cost. In such cogeneration systems the electric current can be adjusted throughout the day to favor either electricity or hot water production.  相似文献   

14.
Abstract

Nanofluids have been recently gaining ever-increasing attention in solar thermoelectric applications due to their promising potentials as heat transfer fluids. This research investigates numerically the performance of a thermoelectric generator (TEG) that is cooled by Al2O3/water nanofluid flows in zigzag microchannel heat sinks (ZMCHS). The one-way fluid–structure interaction (FSI) tool was used to couple the thermal-electric and fluid flow tools in ANSYS 15.0. The present study focused on the effects of heat flux (2–50?kW/m2), laminar Reynolds number (5–1500), inlet flow temperature (293–303?K) and the nanoparticle concentration (1–6%) on the output electric power and the efficiency of the TEG module. The applied heat flux limitations and its relation to the thermal limitations of thermoelectric materials were considered. The results indicated that the increase of heat flux increased the output power and the efficiency of TEG. Higher Reynolds numbers (Re > 400), inlet temperature and nanofluid concentration had an insignificant impact on the TEG performance.  相似文献   

15.
Experimental study and analysis on thermoelectric cooler driven by solar photovoltaic system has been carried out. Here the research attention is on testing of system performance under solar insolation. Experimental results revealed that unit could maintain the temperature in the cooler at 10–15°C and have a coefficient of performance (COP) of about 0.34. Analysis of thermoelectric cooling system has been conducted on the basis of COP, cooling capacity and environmental issues. Further investigations verified that the performance of the system is a function of solar insolation rate and temperature difference of hot and cold sides of thermoelectric module etc. There subsist most favorable solar insolation rate which allows COP and cooling production to be maximum value respectively. It is anticipated that the cooler would have prospective for cold storage of vaccine, food and drink in remote and rural areas or outdoor conditions where electricity is not available.  相似文献   

16.
A simulation model is developed and used to predict transient thermal behavior of the thermoelectric coolers. The present model amends the previous models, in which the P–N pair is simply treated as a single bulk material so that the temperature difference between the semiconductor elements was not possible to evaluate. Based on the present simulation model, the thermoelectric cooler is divided into four major regions, namely, cold end (region 1), hot end (region 2), and the P-type and N-type thermoelectric elements (regions 3 and 4). Solutions for the three-dimensional temperature fields in the P-type and the N-type semiconductor elements and transient temperature variations in the cold and the hot ends have been carried out. The magnitude of the coefficient of performance (COP) of the thermoelectric cooler are calculated in wide ranges of physical and geometrical parameters. To verify the numerical predictions, experiments have been conducted to measure the temperature variations of both the cold and the hot ends. Close agreement between the numerical and the experimental data of the temperature variations has been observed.  相似文献   

17.
Lithium borohydride, a well known complex hydride with its high hydrogen capacity, has shown its application as a solid electrolyte for Li-ion battery. It has been employed as a solid electrolyte with Bi2Te3 nanosheets as anode material for lithium-ion batteries (LIBs). The Bi2Te3 nanosheets were synthesized by the solvothermal method with an average crystallite size of 55 nm as calculated by Debye Scherrer formula. The scanning electron microscopy (SEM), and transmission electron microscopy (TEM) experiments reveal the morphology of the prepared sample as hexagonal nanosheets with the thickness in the range of 20–40 nm. Initial discharge and charge capacity of the negative electrode is found to be 555 mAhg−1 & 1290 mAhg−1 using galvanostatic charge-discharge analyzer at a rate of 0.1C. During the electrochemical charging-discharging experiment, strange but interesting gas evolution was observed, which resulted in the opening of the cell. The careful investigation of this reaction using TG/MS suggest the destabilization of LiBH4. The thermal dehydrogenation analysis depicts that the LiBH4–Bi2Te3 nanosheets composite starts to desorb hydrogen at 61 °C with a total of 9% weight loss. The above destabilization is investigated using XRD and XPS experiments and the detailed mechanism is proposed herein.  相似文献   

18.
Commercial refrigeration systems in supermarkets are intensive users of energy and CO2 is recognized as the most promising refrigerant such systems. The CO2 parallel compression system has been considered in medium- and low-temperature supermarket refrigeration systems, with auxiliary compressors to enhance system performance. This study is intended to investigate the effects of adding a subcooler in a CO2 trans-critical supermarket refrigeration system with parallel compression (SPR system). Mathematical models based on mass and energy conservation are built. Optimization is performed for the gas cooler pressure and the receiver pressure for maximizing the coefficient of performance (COP). The performance of the parallel compression system with a subcooler is analyzed and compared to a baseline parallel compression system in different cities of China. A 6.8% average promotion at least in seasonal energy efficiency ratio (SEER) is predicted, and the energy consumption of the whole system decreases 7.1% totally in Haikou. Gas cooler, taking up 63.3% of the total exergy destruction rate, is the key component to increase efficiency through exergy analysis.  相似文献   

19.
Thin films of (Sb2Te3)70 (Bi2Te3)30 were prepared by thermal evaporation. The composition of the film was confirmed by energy dispersive analysis (EDAX). X-ray diffraction studies showed that the film was polycrystalline with grain size of 4.39 Å and with a preferred orientation in the (0 1 5) directions. Al/((Sb2Te3)70 (Bi2Te3)30)/Al (MSM) thin film capacitors are formed and its AC and dielectric studies were carried out using a digital LCR metre at various frequencies (12 Hz–100 kHz) and temperatures (303–483 K). The dielectric constant for a film of thickness 3000 Å was found to be 86 for 1 kHz at room temperature. The temperature coefficient of capacitance (TCC) and temperature coefficient of permittivity (TCP) were estimated as 684 and 1409 ppm/K for 10 kHz at 303 K, respectively. The activation energy was estimated as 1.190 eV for frequency of 100 kHz at 303 K. The AC conductivity of the films was found to be a hopping mechanism.  相似文献   

20.
CO_2气体冷却器的结构和换热效果对CO_2跨临界循环影响较大.为设计出高效的气体冷却器,有必要对其性能进行模拟和优化.采用有限单元法建立了小型CO_2热泵热水器中气体冷却器稳态分布参数模型,分别对其CO_2侧和水侧的流动与换热进行了数值仿真,运用该模型分别针对CO_2侧进口压力对气体冷却器设计管长和CO_2换热性能的影响进行了分析.结果表明,CO_2侧进口压力在8~12 MPa时,从8 MPa开始每递增1 MPa,换热系数峰值比压力增加1 MPa前的依次递减约57.14%、33.33%、25.00%、9.83%,设计管长比压力增加1 MPa前的依次递减约55.60%、18.75%、11.33%、9.09%.综合考虑管道耗材与CO_2换热能力,针对小型CO_2热泵系统,气体冷却器CO_2侧进口压力取8.5~10 MPa较合理.研究可为气体冷却器设计提供理论指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号