首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, effects of cross-cuts on the thermal performance of heat sinks under the parallel flow condition are experimentally studied. To find effects of the length, position, and number of cross-cuts, heat sinks with one or several cross-cuts ranging from 0.5 mm to 10 mm were fabricated. The pressure drop and the thermal resistance of the heat sinks are obtained in the range of 0.01 W<Pp < 1 W. Experimental results show that among the many cross-cut design parameters, the cross-cut length has the most significant influence on the thermal performance of heat sinks. The results also show that heat sinks with a cross-cut are superior to heat sinks containing several cross-cuts in the thermal performance. Based on experimental results, the friction factor and Nusselt number correlations for heat sinks with a cross-cut are suggested. Using the proposed correlations, thermal performances of cross-cut heat sinks are compared to those of optimized plate-fin and square pin-fin heat sinks under the constant pumping power condition. This comparison yields a contour map that suggests an optimum type of heat sink under the constraint of the fixed pumping power and fixed heat sink volume. The contour map shows that an optimized cross-cut heat sink outperforms optimized plate-fin and square pin-fin heat sinks when 0.04 < log L1 < 1.  相似文献   

2.
The paper presents the geometric optimization of the micro-heat sink with straight circular microchannels with inner diameter of Di = 900 μm. The inlet cross-section has a rectangular shape and positioned tangentially to the tube axis with the four different geometries. The fluid flow regime is laminar and water with variable fluid properties is used as a working fluid. The heat flux spread through the bottom sink surface is q = 100 W/cm2. Thermal and hydrodynamic performances of the heat sink are compared with results obtained for conventional channel configuration with lateral inlet/outlet cross-section. Besides, the results are compared with the tangential micro-heat sink with Di = 300 μm. For all the cases, the thermal and hydrodynamic results are compared on a fixed pumping power basis.  相似文献   

3.
This work describes an inverse problem method to optimize the geometric design for microchannel heat sinks using a novel multi-parameter optimization approach, which integrates the simplified conjugate-gradient scheme and a fully developing three-dimensional heat transfer and flow model. Overall thermal resistance is the objective function to be minimized with number of channels, N, channel aspect ratio, α, and the ratio of channel width to pitch, β, as search variables. With a constant bottom area (10 mm × 10 mm), constant heat flux applied to the heat sink bottom surface (100 W cm?2), and constant pumping power (0.05 W), the optimal design values are N = 71, α = 8.24, and β = 0.6, with a minimum overall thermal resistance of 0.144 K W?1. Increasing pumping power reduces overall thermal resistance of the optimal design; however, the design’s effectiveness declines significantly under high pumping power. The N and α values in the optimal design increase and β decreases as pumping power increases.  相似文献   

4.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

5.
In this paper, a new type of a fan-integrated heat sink named a scroll heat sink is proposed and demonstrated. The most striking feature of the scroll heat sink is that heat dissipation and fluid pumping occurs simultaneously in the whole cooling space without requiring any additional space for a fan module. In the scroll heat sink, the moving fins, which rotate with two eccentric shafts, are inserted between the fixed (cooling) fins. By a relative motion between the moving fins and the cooling fins, a coolant is drawn into the space between them, takes heat away from the cooling fins, and the heated coolant is discharged out of the heat sink. In the present study, an experimental investigation is performed in order to demonstrate the concept of the scroll heat sink. Average coolant velocities and thermal resistances of the scroll heat sink are measured for various rotating speeds of the moving fins from 200 rpm to 500 rpm. Experimental results show that measured flow rates of the coolant are almost linearly proportional to the rotating speed of the moving fins. A theoretical model is also developed to estimate the required pumping power and the thermal resistance, and validated using experimental results. The theoretical model shows that optimized scroll heat sinks have lower thermal resistances than optimized plate-fin heat sinks under the fixed pumping power condition.  相似文献   

6.
This work uses an optimization procedure consisting of a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to investigate the optimal geometric parameters of a double-layered microchannel heat sink (DL-MCHS). The overall thermal resistance RT is the objective function to be minimized, and the number of channels N, channel width ratio β, lower channel aspect ratio αl, and upper channel aspect ratio αu are the search variables. For a given bottom area (10 × 10 mm) and heat flux (100 W/cm2), the optimal (minimum) thermal resistance of the double-layered microchannel heat sink is about RT = 0.12 °C/m2W. The corresponding optimal geometric parameters are N = 73, β = 0.50, αl = 3.52, and, αu = 7.21 under a total pumping power of 0.1 W. These parameters reduce the overall thermal resistance by 52.8% compared to that yielded by an initial guess (N = 112, β = 0.37, αl = 10.32, and αu = 10.93). Furthermore, the optimal thermal resistance decreases rapidly with the pumping power and then tends to approach an constant value. As the pumping power increases, the optimal values of N, αl, and αu increase, whereas the optimal β value decreases. However, increasing the pumping power further is not always cost-effective for practical heat sink designs.  相似文献   

7.
This article is the first in a three part study on flow boiling of refrigerants R236fa and R245fa in a silicon multi-microchannel heat sink. The heat sink was composed of 67 parallel channels, which are 223 μm wide, 680 μm high and 20 mm long with 80 μm thick fins separating the channels. The base heat flux was varied from 3.6 to 221 W/cm2, the mass velocity from 281 to 1501 kg/m2 s and the exit vapour quality from 2% to 75%. The working pressure and saturation temperature were set nominally at 273 kPa and 25 °C, respectively. The present database includes 1217 local heat transfer coefficient measurements, for which three different heat transfer trends were identified, but in most cases the heat transfer coefficient increased with heat flux and was almost independent of vapour quality and mass velocity. Importantly, it was found for apparently the first time that the heat transfer coefficient as a function of vapour quality reaches a maximum at very high heat fluxes and then decreases with further increase of heat flux.  相似文献   

8.
A numerical investigation is conducted to predict the thermal and hydraulic performances of the microchannel heat sink (MCHS) with different geometric parameters of triangular rib in the transverse microchamber. The parametric variables of width, length and height of the triangular rib are studied to find optimum design. The flow structure and characteristics of the interrupted MCHS are interpreted in details. The dimensionless ratios of average Nusselt number, friction factor and thermal enhancement factor are evaluated. It is found that the heat transfer rate is increasing with the increase of rib width and height, but decreasing with the increase of rib length. The boundary layer interruption and redevelopment effects introduced by the triangular rib are discussed. The results of thermal enhancement factor reveals an optimum geometrical parameters for the triangular rib with width = 100 μm, length = 400 μm and height = 120 μm for about Reynolds number of 500, yielding 43% enhancement relative to non-interrupted rectangular MCHS at equal pumping power. The results of mean Nusselt number ratio reveal an optimum enhancement of 56% relative to non-interrupted MCHS.  相似文献   

9.
With the rapid development of the information technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit about 100 W/cm2. Some applications in high technologies require heat fluxes well beyond such a limitation. Therefore the search of a more efficient cooling technology becomes one of the bottleneck problems of the further development of IT industry. The microchannel flow geometry offers large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid though the channels. A normal channel could not give high heat flux although the pressure drop is very small. A minichannel can be used in heat sink with a quite high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20 mm × 20 mm is analyzed numerically for the single-phase laminar flow of water as coolant through small hydraulic diameters and a constant heat flux boundary condition is assumed. The effects of channel dimensions, channel wall thickness, bottom thickness and inlet velocity on the pressure drop, thermal resistance and the maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly-optimized configuration of heat sink is found which can cool a chip with heat flux of 256 W/cm2 at the pumping power of 0.205 W. The nearly-optimized configuration is verified by an orthogonal design. The simulated thermal resistance agrees quite well with the result of conventional correlations method with the maximum difference of 12%.  相似文献   

10.
This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm2 and 500 W/cm2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid.  相似文献   

11.
This experimental study aims to investigate the heat transfer characteristics of single-phase turbulent flow of R-134a refrigerant in a rectangular multi-micro channel heat sink having 27 channels where each channel has a hydraulic diameter of 421 μm. Experimental results were obtained for inlet temperatures ranging from 24 to 33 °C, mass fluxes from 1485 to 2784 kg m 2 s 1 and wall heat fluxes from 3 to 24 kW m 2. The results indicate that the heat transfer coefficients are found to be higher at lower inlet temperatures than those at higher ones. In addition, when equal amount of heat supplied to the heat sink, the heat transfer coefficients increase with increasing the mass flux of refrigerant. They were also compared with 12 well-known correlations and it was seen that 4 of 12 were in good agreement with each other with the average deviation < 10%. The findings demonstrate that well-known correlations in fundamental sources can be used to predict the heat transfer coefficient of R-134a during its single phase flow in a multiport microchannel heat sink under turbulent regime.  相似文献   

12.
In this paper, low melting point metal (LMPM), eutectic alloy Bi31.6In48.8Sn19.6 (E-BiInSn), was adopted as phase change material for potential thermal management applications. First, E-BiInSn was prepared and its main thermophysical properties were characterized. Then, transient thermal performances of E-BiInSn based heat sinks with internal crossed fins were tested, in comparison with that of organic PCM (octadecanol) which has close melting point. Three types of heat sink structures which have different number of internal fins were studied. Three heating conditions were applied, namely 80 W (2.2 W/cm2), 200 W (5.6 W/cm2) and 320 W (8.9 W/cm2). For all of the cases, E-BiInSn exhibited much superior thermal performance than that of octadecanol. Furthermore, cyclic test of the E-BiInSn heat sink was carried out, which showed good repeatability and stability, and without supercooling. Finally, a simplified 3D conjugate numerical model was developed to simulate the melting process of LMPM heat sink, which showed good agreement with the experimental results. This simplified model would be much useful in practical thermal design and optimization of LMPM heat sink, for that it would significantly save the computational time consumption.  相似文献   

13.
This work illustrates the compact heat sink simulations in forced convection flow with side-bypass effect. Conventionally, the numerical study of the fluid flow and heat transfer in finned heat sinks employs the detailed model that spends a lot of computational time. Therefore, some investigators begin to numerically study such problem by using the compact model (i.e. the porous approach) since the regularly arranged fin array can be set as a porous medium. The computations of the porous approach model will be faster than those of the detailed mode due to the assumption of the volume-averaging technique. This work uses the Brinkman–Forchheimer model for fluid flow and two-equation model for heat transfer. A configuration of in-line square pin-fin heat sink situated in a rectangular channel with fixed height (H = 23.7 mm), various width and two equal-spacing bypass passages beside the heat sink is successfully studied. The pin-fin arrays with various porosities (ε = 0.358–0.750) and numbers of pin-fins (n = 25–81), confined within a square spreader whose side length (L) is 67 mm, are employed. The numerical results suggest that, within the range of present studied parameters (0.358 ? ε ? 0.750, 25 ? n ? 81 and 1 ? W/L ? 5), the pin-fin heat sink with ε = 0.750 and n = 25 is the optimal cooling configuration based on the maximum ratio of Nusselt number to dimensionless pumping power (Nu/(ΔP × Re3)). Besides, based on medium Nu/(ΔP × Re3) value and suitable channel size, W/L = 2–3 is suggested as the better size ratio of channel to heat sink.  相似文献   

14.
The numerical modeling of the conjugate heat transfer and fluid flow of Al2O3/water nanofluid through the microchannel heat sink is presented in the paper. The laminar flow regime was considered along with viscous dissipation effect. The microchannel heat sink with square microchannels and Dh = 50 μm is considered. The heat flux was fixed to q = 35 W/m2 with heating and cooling cases. The water based Al2O3 nanofluid was encountered with various volume concentrations of Al2O3 particles ?=19% and three diameters of the particle dp = 13, 28 and 47 nm. The analysis is performed on the results obtained for the local heat transfer coefficients based on a fixed pumping power. The results reveal a different local heat transfer behavior compared to the analysis made on a basis of the constant Re.  相似文献   

15.
Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. The microchannels considered range in width from 102 μm to 997 μm, with the channel depth being nominally 400 μm in each case. Each test piece has a footprint of 1.27 cm by 1.27 cm with parallel microchannels diced into one surface. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements over the entire test piece. The experiments are conducted with deionized water which enters the channels in a purely liquid state. Results are presented in terms of temperatures and pressure drop as a function of imposed heat flux. The experimental results allow a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and lead to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient.  相似文献   

16.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

17.
Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer of a dielectric fluid, Fluorinert FC-77, in microchannel heat sinks. Experiments are performed for mass fluxes ranging from 250 to 1600 kg/m2 s. Seven different test pieces made from silicon and consisting of parallel microchannels with nominal widths ranging from 100 to 5850 μm, all with a nominal depth of 400 μm, are considered. An array of temperature sensors on the substrate allows for resolution of local temperatures and heat transfer coefficients. The results of this study show that for microchannels of width 400 μm and greater, the heat transfer coefficients corresponding to a fixed wall heat flux as well as the boiling curves are independent of channel size. Also, heat transfer coefficients and boiling curves are independent of mass flux in the nucleate boiling region for a fixed channel size, but are affected by mass flux as convective boiling dominates. A strong dependence of pressure drop on both channel size and mass flux is observed. The experimental results are compared to predictions from a number of existing correlations for both pool boiling and flow boiling heat transfer.  相似文献   

18.
Non-uniform heat flux generated by microchips causes “hot spots” in very small areas on the microchip surface. These hot spots are generated by the logic blocks in the microchip bay; however, memory blocks generate lower heat flux on contrast. The goal of this research is to design, fabricate, and test an active cooling micro-channel heat sink device that can operate under atmospheric pressure while achieving high-heat dissipation rate with a reduced chip-backside volume, particularly for spot cooling applications. An experimental setup was assembled and electro-osmotic flow (EOF) was used thus eliminating high pressure pumping system. A flow rate of 82 μL/min was achieved at 400 V of applied EOF voltage. An increase in the cooling fluid (buffer) temperature of 9.6 °C, 29.9 °C, 54.3 °C, and 80.1 °C was achieved for 0.4 W, 1.2 W, 2.1 W, and 4 W of heating powers, respectively. The substrate temperature at the middle of the microchannel was below 80.5 °C for all input power values. The maximum increase in the cooling fluid temperature due to the joule heating was 4.5 °C for 400 V of applied EOF voltage. Numerical calculations of temperatures and flow were conducted and the results were compared to experimental data. Nusselt number (Nu) for the 4 W case reached a maximum of 5.48 at the channel entrance and decreased to reach 4.56 for the rest of the channel. Nu number for EOF was about 10% higher when compared to the pressure driven flow. It was found that using a shorter channel length and an EOF voltage in the range of 400–600 V allows application of a heat flux in the order of 104 W/m2, applicable to spot cooling. For elevated voltages, the velocity due to EOF increased, leading to an increase in total heat transfer for a fixed duration of time; however, the joule heating also got elevated with increase in voltage.  相似文献   

19.
The critical heat flux (CHF) and heat transfer coefficient of de-ionized (DI) water pool boiling have been experimentally studied on a plain surface, one uniform thick porous structure, two modulated porous structures and two hybrid modulated porous structures. The modulated porous structure design has a porous base of 0.55 mm thick with four 3 mm diameter porous pillars of 3.6 mm high on the top of the base. The microparticle size combinations of porous base and porous pillars are uniform 250 μm, uniform 400 μm, 250 μm for base and 400 μm for pillars, and 400 μm for base and 250 μm for pillars. Both the CHF and heat transfer coefficient are significantly improved by the modulated porous. The boiling curves for different kinds of porous structures and a plain surface are compared and analyzed. Hydrodynamic instability for the two-phase change heat transfer has been delayed by the porous pillars which dramatically enhances the CHF. The highest pool boiling heat flux occurring on the modulated porous structures has a value of 450 W/cm2, over three times of the CHF on a plain surface. Additionally, the highest heat transfer coefficient also reaches a value of 20 W/cm2 K, three times of that on a plain copper surface. The study also demonstrates that the horizontal liquid replenishing is equally important as the vertical liquid replenishing for the enhancement of heat transfer coefficient and CHF improvement in nucleate pool boiling.  相似文献   

20.
The present paper deals with the artificial neural network modeling (ANN) of heat transfer coefficient and Nusselt number in TiO2/water nanofluid flow in a microchannel heat sink. The microchannel comprises of 40 channels; each channel has a length of 4 cm, a width of 500 μm, and a height of 800 μm. In the ANN modeling of heat transfer coefficient and Nusselt number 23 and 72 datasets have been used, respectively. The experimental Nusselt number has been calculated based on three different thermal conductivity models, four volume fractions of 0, 0.5, 1, and 2%, two values of Reynolds number i.e. 400 and 1200 and three different heating rates including 50.6, 60.7, and 69.1 W. Therefore, the inputs that are introduced to the neural network are volume fraction of nanoparticles, Reynolds number, heating rate, and model number while the output of network is the Nusselt number. It is elucidated that an appropriately trained network can act as a good alternative for costly and time-consuming experiments on the nanofluid flow in microchannels. The average relative errors in the prediction of Nusselt number and heat transfer coefficients were 0.3% and 0.2%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号