首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Studies are made on the viscoelastic fluid flow and heat transfer characteristics over a stretching sheet with frictional heating and internal heat generation or absorption. The heat transfer analysis has been carried out for the cases of prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The momentum equation is decoupled from the energy equation for the present incompressible boundary layer flow problem with constant physical parameters. Exact solution for the velocity field and the skin-friction are obtained. Also, the solutions for the temperature and heat transfer characteristics are obtained in terms of Kummer’s function. The work due to deformation in energy equation, which is essential while formulating the viscoelastic boundary layer flow problems, is considered. This paper examines the effect of viscoelastic parameter, Eckert number, Prandtl number and non-uniform heat source/sink parameter on temperature distribution, wall temperature gradient for PST-case and wall temperature for PHF-case.  相似文献   

2.
In this paper we study the flow and heat transfer characteristics of a viscous fluid over a nonlinearly stretching sheet in the presence of non-uniform heat source and variable wall temperature. A similarity transformation is used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge–Kutta scheme is used to obtain the solution of the boundary value problem. The effects of various parameters (such as the power law index n, the Prandtl number Pr, the wall temperature parameter λ, the space dependent heat source parameter A1 and the temperature dependent heat source parameter B1) on the heat transfer characteristics are analyzed. The numerical results for the heat transfer coefficient (the Nusselt number) are presented for several sets of values of the parameters and are discussed. The results reveal many interesting behaviors that warrant further study on the effects of non-uniform heat source and the variable wall temperature on the heat transfer phenomena at the nonlinear stretching sheet.  相似文献   

3.
In this paper the flow of a power-law fluid due to a linearly stretching sheet and heat transfer characteristics using variable thermal conductivity is studied in the presence of a non-uniform heat source/sink. The thermal conductivity is assumed to vary as a linear function of temperature. The similarity transformation is used to convert the governing partial differential equations of flow and heat transfer into a set of non-linear ordinary differential equations. The Keller box method is used to find the solution of the boundary value problem. The effect of power-law index, Chandrasekhar number, Prandtl number, non-uniform heat source/sink parameters and variable thermal conductivity parameter on the dynamics is analyzed. The skin friction and heat transfer coefficients are tabulated for a range of values of said parameters.  相似文献   

4.
The analysis includes a steady two-dimensional MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with the effect of non-uniform source/sink. Two types of different heating processes are considered namely (i) prescribed surface temperature (PST) and (ii) prescribed wall heat flux (PHF). The governing system of non-linear partial differential equations are transformed into ordinary differential equations using similarity transformations and which are then solved numerically using Runge Kutta Fehlberg fourth–fifth order method. Comparison of the numerical results is made with the existing literature and the results are found to be in good agreement. The effects of the governing parameters on the flow field and heat transfer characteristics are obtained and discussed. It is found that velocity distribution for clean fluid decreases where as dust fluid increases with the increase of fluid particle interaction parameter when λ > 1 and λ < 1.  相似文献   

5.
In this article, influences of viscous dissipation and thermal radiation on MHD flow of two immiscible fluids in a vertical channel filled with porous materials have been studied theoretically. The equations governing the problem are transformed to a system of ODE and are solved by homotopy analysis method (HAM). The effects of physical parameters on flow and heat transfer characteristics have been discussed with the help of graphs. It is found that viscous dissipation parameter, heat source parameter, thermal parameter lead to enhance velocity as well as temperature field. Also, increasing Brinkmann number and heat source parameter lead to suppress Coefficient of skin friction at the left wall but the opposite is true at the other wall. However, these parameters give reverse trend on Nusselt number distribution. Further, increasing thermal conductivity ratio and fluids height ratio leads to increase heat transfer coefficient significantly at the left wall. In addition, we have compared present HAM solution with analytical solution of the problem (ie, absence of radiation parameter and Brinkmann number).  相似文献   

6.
In this paper we study the magneto-hydrodynamic flow and heat transfer of an electrically conducting, viscoelastic fluid past a stretching surface, taking into account the effects of Joule and viscous dissipation, internal heat generation/absorption, work done due to deformation and thermal radiation. Closed-form solutions for the boundary layer equations of the flow are presented for two classes of viscoelastic fluid, namely, the second-grade and Walters’ liquid B fluids. Thermal transport is analyzed for two types of non-isothermal boundary conditions, i.e. prescribed surface temperature (PST) and prescribed surface heat flux (PHF) varying as a power of the distance from the origin. Results for some special cases of the present analysis are in excellent agreement with the existing literature. The effects of various physical parameters, such as viscoelasticity, magnetic parameter, thermal radiation parameter, heat source/sink parameter, Prandtl number, Eckert number and suction/injection parameter on the velocity and temperature profiles, skin friction coefficient and Nusselt number are examined and discussed in detail.  相似文献   

7.
This paper investigates the magnetohydrodynamic (MHD) flow and heat transfer characteristics in the presence of a uniform applied magnetic field. The boundary layer flow of a third-order fluid is induced due to linear stretching of a non-conducting sheet. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). The governing non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence of these solutions is discussed. Velocity and temperature distributions are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form. Emphasis has been given to the variations of the emerging parameters such as third-order parameter, magnetic parameter, Prandtl number and the Eckert number. It is noted that the skin friction coefficient decreases as the magnetic parameter or the third grade parameter increases.  相似文献   

8.
A computational fluid dynamics simulation of heat transfer characteristics on the conjugate effect of Joule heating and magnetic field acting normal to the lid-driven cavity with a heated semi-circular source on one wall under constant temperature is investigated. The left wall of the cavity moves in an upward (case I) or downward (case II) direction, and buoyancy forces are also effective. Horizontal walls are adiabatic. The governing mass, momentum, and energy equations along with boundary conditions are expressed in a normalized primitive variables formulation. The finite element method is used in the solution of the normalized governing equations. The study is performed for pertinent parameters such as the Rayleigh number, Hartmann number, and Joule heating parameter. It is found that the average Nusselt number can be decreased with the increasing of the Rayleigh number in the presence of Joule effect. The magnetic field can be a good control parameter for heat transfer and fluid flow.  相似文献   

9.
The effects of viscous dissipation, non-uniform heat source/sink, magnetic field, and thermal radiation on heat transfer characteristics of a thin liquid film flow over an unsteady stretching sheet are analyzed. A similarity transformation is used to reduce the governing time dependent momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations with the appropriate boundary conditions are solved by an efficient shooting algorithm with fourth order Runge–Kutta technique. The effects of the physical parameters on the flow and heat transfer characteristics are presented through graphs and analyzed. The numerical results for the wall temperature gradient (Nusselt number) are calculated and presented through tables. Also, the effects of the physical parameters on the heat transfer characteristics are brought out: suggestions are made for efficient cooling. Furthermore, the limiting cases are obtained and are found to be in good agreement with the previously published results.  相似文献   

10.
The problem of steady two‐dimensional free convective flow of a Walters fluid (model B ′) in a porous medium between a long vertical wavy wall and parallel flat wall in the presence of a heat source is discussed. The channel is divided into two passages by means of a thin, perfectly conductive plane baffle and each stream will have its own pressure gradient and hence the velocity will be individual in each stream. The governing equations of the fluid and the heat transfer have been solved subject to the relevant boundary conditions by assuming that the solution consists of two parts: a mean part and disturbance or perturbed part. Exact solutions are obtained for the mean part and the perturbed part is solved using long wave approximation. Results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as Grashof number, wall temperature ratio, porous parameter, heat source/sink parameter, product of non‐dimensional wave number, and space‐coordinate and viscoelastic parameter at different positions of the baffle. The relevant flow and heat transfer characteristics, namely, skin friction and the rate of heat transfer at both walls, has been discussed in detail. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21118  相似文献   

11.
In the present article an analysis is carried out to study the boundary layer flow and heat transfer characteristics of a second grade, non-Newtonian fluid through a porous medium. The stretching sheet is assumed to be permeable so that suction effects come into play. The effects of viscous dissipation, non-uniform heat source/sink on heat transfer are addressed. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. Analytical solutions are obtained for the resulting boundary value problems. The effects of viscous dissipation and non-uniform heat source/sink, Prandtl number, Eckert number and suction/injection on heat transfer are shown in several plots for two different heating processes (CST and PST cases). Dimensionless surface temperature gradient is tabulated for various values of the governing the parameters.  相似文献   

12.
We consider the steady state, viscous, incompressible two-dimensional magneto hydrodynamic flow of an electrically conducting power law fluid over a vertical stretching sheet. The stretching of the surface velocity and the prescribed surface temperature are assumed to vary linearly with the distance from the slit. The coupled partial differential equations governing the flow and heat transfer are transformed into non-linear coupled ordinary differential equations by a similarity transformation. The transformed boundary layer equations are solved numerically by Keller-Box method for several sets of values of the parameters governing the flow and heat transfer. The flow and heat transfer characteristics are analysed and discussed for different values of the parameters. We observe that the local skin friction coefficient and the local Nusselt number decrease as the magnetic parameter Mn increase for fixed value of the buoyancy parameter λ. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.  相似文献   

13.
The non-uniform heat source/sink effect on the flow and heat transfer from an unsteady stretching sheet through a quiescent fluid medium extending to infinity is studied. The boundary layer equations are transformed by using similarity analysis to be a set of ordinary differential equations containing three parameters: unsteadiness parameter (S), space-dependent parameter (A?) and temperature-dependent parameter (B?) for heat source/sink. The velocity and temperature fields are solved using the Chebyshev finite difference method (ChFD). Results showed that the heat transfer rate, − θ′(0) and the skin friction, − f″(0) increase as the unsteadiness parameter increases whereas decrease as the space-dependent and temperature-dependent parameters for heat source/sink increase.  相似文献   

14.
An analysis is carried out to study heat source and radiation effects on two-dimensional steady flow of an electrically conducting, incompressible, viscoelastic fluid (Walter's liquid-B′) past a stretching sheet in the presence of transverse uniform magnetic field. Two cases are studied namely (i) the sheet with prescribed power law surface temperature (PST case) and (ii) the sheet with prescribed power law surface heat flux (PHF case). Kummer's functions are used to obtain temperature field and wall temperature gradient. The variations in the velocity and temperature field with change in parameters encountered into the equations are obtained and depicted graphically. The numerical values of the variations in wall temperature gradient due to change in physical parameters are presented in the tables. The results obtained have been discussed.  相似文献   

15.
In this paper we have analyzed the combined effects of magnetic field and convective diffusion of species through a non-Darcy porous medium over a vertical stretching sheet with temperature dependent viscosity and non-uniform heat source/sink. The boundary layer equations are transformed into ordinary differential equations using self-similarity transformation which are then solved numerically using fifth-order Runge–Kutta Fehlberg method with shooting technique for various values of the governing parameters. The effects of electric field parameter, non-uniform heat source/sink parameters and Schmidt number on concentration profiles are analyzed and discussed graphically. Favorable comparisons with previously published work on various special cases of the problem are obtained.  相似文献   

16.
Viscoelastic boundary layer flow and heat transfer over an exponential stretching continuous sheet have been examined in this paper. Approximate analytical similarity solution of the highly non-linear momentum equation and confluent hypergeometric similarity solution of the heat transfer equation are obtained. Accuracy of the analytical solution for stream function is verified by numerical solutions obtained by employing Runge-Kutta fourth order method with shooting. These solutions involve an exponential dependent of stretching velocity, prescribed boundary temperature and prescribed boundary heat flux on the flow directional coordinate. The effects of various physical parameters like viscoelastic parameter, Prandtl number, Reynolds number, Nusselt number and Eckert number on various momentum and heat transfer characteristics are discussed in detail in this work.  相似文献   

17.
The steady laminar flow and heat transfer of a second grade fluid over a radially stretching sheet is considered. The axisymmetric flow of a second grade fluid is induced due to linear stretching of a sheet. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). Introducing the dimensionless quantities the governing partial differential equations are transformed to ordinary differential equations. The developed non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for velocity and temperature are constructed and are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form. Attention has been focused to the variations of the emerging parameters such as second grade parameter, Prandtl number and the Eckert number. Finally, comparison between the HAM and numerical solutions are also included and found in excellent agreement.  相似文献   

18.
This paper presents the results of a comprehensive numerical study to analyze turbulent mixed convection in a vertical channel with a flush-mounted discrete heat source in each channel wall. The conjugate heat transfer problem is solved to study the effect of various parameters like the thermal conductivity of the wall material (ks), the thermal conductivity of the flush-mounted discrete heat source (kc), Reynolds number (Res), modified Richardson number (Ri⁎) and the aspect ratio of the channel (AR). The standard kε turbulence model, modified by including buoyancy effects, without wall functions, has been used for the analysis. The two-dimensional governing equations are discretised on a semi-staggered, non-uniform grid, using the finite volume method. The asymptotic computational fluid dynamics (ACFD) technique has been then applied to obtain a correlation for the non-dimensional maximum temperature θ¯max, which can be used for a wide range of parameters.  相似文献   

19.
采用不等径结构自激振荡流热管实现强化传热   总被引:1,自引:0,他引:1  
针对不等径结构回路型自激振荡流热管,利用电加热板作为热源,通过改变加热板的输入功率以及加热板的位置,对其壁温和热传输特性进行了实验研究,并与等径结构回路型自激振荡流热管在相同的工质及充液率,相同的热管长度及倾角,以及相同的电加热热板位置等条件下的传热特性进行了对比分析.结果表明:不等径结构自激振荡流热管在中、低负荷情况下,可以起到明显的强化传热作用;而当不等径位置在热管的最下面、热源位置在变径区域的下部时强化传热效果最佳.  相似文献   

20.
This article presents the theoretical study of the effects of suction/injection and nonlinear thermal radiation on boundary layer flow near a vertical porous plate. The importance of the convective boundary condition as regards the heat transfer rate is taken into account. The coupled nonlinear boundary layer equations are translated into a set of ordinary differential equations via a similarity transformation. The consequences of the active parameters like the suction parameter, injection parameter, convective heat transfer parameter, nonlinear thermal radiation parameters, and Grashof number dictating the flow transport are examined. The numerical result obtained shows that with suction/injection, the heat transfer rate could be increased with nonlinear thermal radiation parameter augment whereas decays with the convective heat transfer parameter and Grashof number. In the presence of suction/injection, the wall shear stress generally increases with nonlinear thermal radiation parameter, convective heat transfer parameter, and Grashof number. The suction has an increasing effect on Nusselt number and shear stress whereas a decreasing effect on Nusselt number and skin friction is seen with injection augment. The nonlinear thermal radiation is an increasing function of the temperature gradient far away from the plate whereas a decreasing function near the porous plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号