首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments are performed to investigate the single-phase flow and flow-boiling heat transfer augmentation in 3D internally finned and micro-finned helical tubes. The tests for single-phase flow heat transfer augmentation are carried out in helical tubes with a curvature of 0.0663 and a length of 1.15 m, and the examined range of the Reynolds number varies from 1000 to 8500. Within the applied range of Reynolds number, compared with the smooth helical tube, the average heat transfer augmentation ratio for the two finned tubes is 71% and 103%, but associated with a flow resistance increase of 90% and 140%, respectively. A higher fin height gives a higher heat transfer rate and a larger friction flow resistance. The tests for flow-boiling heat transfer are carried out in 3D internally micro-finned helical tube with a curvature of 0.0605 and a length of 0.668 m. Compared with that in the smooth helical tube, the boiling heat transfer coefficient in the 3D internally micro-finned helical tube is increased by 40-120% under varied mass flow rate and wall heat flux conditions, meanwhile, the flow resistance is increased by 18-119%, respectively.  相似文献   

2.
This work presents a numerical investigation of a vertical internally finned tube subjected to forced convection heat transfer. The governing equations were solved numerically using the control volume technique. Nusselt number, Nu, and friction factor multiplied by Reynolds number, fRe, are influenced greatly by the height and number of the radial fins. The velocity and temperature distributions inside the tube depend on the number and height of the radial fins. This paper suggests that for best heat transfer to be achieved there is an optimum combination of fin numbers and height.  相似文献   

3.
《节能》2016,(5)
试验研究了单回路紫铜-水脉动热管在3种充液率下的传热性能,理论分析了不同加热功率和充液率下工质的干度、流速、显热和潜热及其份额的变化特性。结果显示:较小传热功率时,减小充液率或增大加热功率会提高热管的传热性能;而较高传热功率时,充液率和加热功率对热管的传热性能影响较小。增加传热功率或减小充液率,会提高管内工质的流速及流量,提高热管的潜热传热量及潜热传热份额;显热量随加热功率和充液率的增加而增大。  相似文献   

4.
利用田口法对具有不同肋结构参数的竖直三维内肋管管内变压器油自然对流换热特性进行了实验研究,获得了肋高、肋宽、轴向间距和周向间距等肋结构参数对管内自然对流换热性能的影响规律,提出了肋结构参数最佳组合。结果表明,变压器顶层油温从40℃变化至100℃,肋高和肋宽对换热性能的影响占比基本不变,周向间距的影响占比逐渐减小,轴向间距的影响占比逐渐增大;相比光管,三维内肋管的自然对流强化换热性能随顶层油温的增大而增加,变压器油自然对流Nu最大约为光管的1.75倍。拟合了竖直三维内肋管管内变压器油自然对流换热计算关联式,其与实验数据的最大偏差为±16%。  相似文献   

5.
Heat transfer performance of internally finned tubes with blocked core-tube was numerically investigated by the realizable kε turbulence model with wall function method using a commercial software FLUENT. Three kinds of lateral fin profiles, that is, S-shape, Z-shape and V-shape, were studied and compared. The corresponding correlations of Nusselt number and friction factor for different-shape internally finned tubes were obtained. The comprehensive performances of the studied tubes were compared under identical mass flow rate, identical pumping power and identical pressure drop conditions. It was found that tubes with S-shape fins and Z-shape fins were superior to that with V-shape fins, and moreover, tube with Z-shape fins had the best performance. The fin outer curvature radius R near the inner surface of out-tube for the S-shape finned tube had appreciable effect on heat transfer, whereas the fin inner curvature radius r near the outer surface of blocked core-tube had little impact on heat transfer. Hence, when manufacturing the internally finned tube with S-shape fins, it is better to select the outer curvature radius R as smaller as possible.  相似文献   

6.
提出了一种基于太阳能碟式聚光器的Al-Si合金储能锅炉的构想,搭建了Al-Si合金与高温热管传热的实验平台。试验结果表明,Al-Si合金与高温热管之间的传热密度为54.4 kJ/m2。对Al-Si合金的传热温度分布进行模拟,以热流密度为54.4 kJ/m2,换热系数为200 W/(m2.K),空气温度25℃的对流边界条件时,模拟结果和试验测试结果比较吻合,为Al-Si合金储能锅炉设计提供了依据。  相似文献   

7.
HeatTransferCharacteristicsofLaminarFlowinInternallyFinnedTubesunderVariousBoundaryConditions¥Ze-NingWang;Qiang-TaiZhou(Depar...  相似文献   

8.
An experimental study is presented for the heat transfer performance of a rectangular double-loop natural circulation system, in which the condensers are made of double tubes with water-steam as the working fluid. Detailed temperature measurements of the core fluid and the wall are made, from which overall heat transfer coefficients for the evaporator, condensers, and entire system are obtained. Parametric studies of the liquid charge level, fluid properties, and heating or cooling conditions on the heat transfer performance are presented and correlation equations are given. The results show that the overall heat transfer coefficients for the evaporator, condensers, and entire loop are all increasing with decreasing liquid charge level. Overhead phenomena at low liquid charge level and thermal oscillation at some situations are also observed and discussed.  相似文献   

9.
基于植物叶片的蒸腾作用,以叶脉结构作为蓝本,设计了分形角度为50°、60°、70°、80°、90°的仿叶脉槽道结构,并将其应用于平板热管冷凝端。其中上一级槽道与下一级槽道的长度比、宽度比均为0.7,第一级槽道长度为16.0 mm、宽度为2.0 mm、深度为0.3 mm,并且设置一组未经表面处理的平板热管作为对照。实验结果表明:分形角为80°时性能最优,其冷凝热阻最小可达39.420℃/kW,相比未经表面处理平板热管的热阻降低了40.29%;相对于传统的直槽道结构,置于冷凝端的仿叶脉槽道结构能极大地降低工质流阻,有利于工质回流。  相似文献   

10.
Ground heat exchangers have vital importance for ground source heat pump applications. Various configurations tried to improve heat transfer in the soil. A new kind of aluminium finned pipe buried in the soil for this aim. In order to compare effectiveness of the Al finned pipe over the traditional PPRC pipe an experimental study carried out. The experimental GSHP system was installed at Y?ld?z Technical University Davupasa Campus on 800 m2 surface area with no special surface cover. Temperature data were collected using thermocouples buried in soil horizontally and vertically at various distances from the pipe center and at the inlet and the outlet of the ground heat exchanger. Experimental results were compared with results from analytical study. To compare effectiveness of the Al finned pipe and PPRC pipe a new parameter defined as transferred amount of heat per unit mass of working fluid per unit time for this aim. It is found that Al finned pipe has higher heat transfer values than the traditional PPRC pipe.  相似文献   

11.
基于航空航天等领域对环路热管长距离传热的需求,设计制造了一套传热距离8.1m的圆柱型蒸发器环路热管,试验了不同加热功率、不同冷凝温度下该环路热管的启动和变工况运行性能,并对其热阻及最大传热能力进行了分析。研究结果表明:当其他条件一致、初始气液分布相同和不同时,加热功率由100W增大至160W后,本研究中的环路热管启动时间和启动温升均发生一定程度的下降;加热功率100W时,冷凝温度由10℃降低至-10℃使得环路热管启动时间增加,加热功率160W时,冷凝温度由10℃降至-10℃对环路热管的启动时间影响不大。在冷凝温度0℃下,该环路热管在100~500W范围内均能稳定运行,且200W时环路热管传热效率最高,传热温差最小,稳定运行温度最低;另外,由于系统传输距离较长,每个工况达到稳定所需要的时间也较长,分布于1000至3500S内。随着加热功率的增大,环路热管热阻先减小后逐渐增大,该环路热管传热热阻最大不超过0.09℃/W,最小为0.024℃/W;随着传热距离的增大,管路的热损失增加,总压降和热阻也变大。当传热距离基本相同时,蒸发器容积的大小、冷凝器的冷凝能力及气液管线的布置形状均在一定程度上影响环路热管的最大传热能力。  相似文献   

12.
采用数值模拟方法,对径向错列翅片管内含不凝结气体水蒸气的凝结对流换热及阻力特性进行了综合分析。将编写的自定义函数(UDF)导入ANSYS FLUENT软件,对新型强化管传热性能和阻力性能进行了数值模拟,并根据管长方向壁面上蒸汽质量分数的变化情况,讨论分析了凝结过程中翅片管传热性能的变化规律。分析结果表明:与光管相比,内翅片管的强化传热效果随翅数增多、翅片换热接触面积增大而更加显著;另一方面,翅片管的流动阻力相应增大,对管路换热产生不良影响。在所研究翅型范围内16翅y=2x~2型翅片管综合强化换热效果更优;此外随着换热过程的持续,蒸汽凝结逐渐放缓;入口速度增大导致水蒸气凝结不充分,对换热效果的提升有一定制约。  相似文献   

13.
Heat transfer in the evaporator and condenser sections of a pulsating heat pipe (PHP) with open end is modeled by analyzing thin film evaporation and condensation. The heat transfer solutions are applied to the thermal model of the pulsating heat pipe and a parametric study was performed. The results show that the heat transfer in a PHP is mainly due to the exchange of sensible heat. The frequency and amplitude of the oscillation is almost unaffected by surface tension after steady oscillation has been established. The amplitude of oscillation decreases with decreasing diameter. The amplitude of oscillation also decreases when the wall temperature of the heating section is decreased, but the frequency of oscillation is almost unchanged.  相似文献   

14.
A heat transfer model for three-fluid separated heat pipe exchanger was analyzed,and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter-flow mode was obtained.It was found that the forms of temperature transfer matrix are similar for heat pipe rows with equal or different heat transfer surface area.Furthermore,by using the temperature transfer matrix of the heat pipe exchanger,the relationship between heat transfer effectiveness θ 1,θ 2 and M,NTU,U,Δt i were derived for the exchanger operating in parallel-flow or counter-flow mode,and a simple special example was adopted to demonstrate the correctness of these relationships.  相似文献   

15.
蒋祖星 《节能》2002,(7):8-9
对管内对流换热过程的温差换热和粘性摩擦引起的熵产进行了分析和优化计算 ,对换热设备和传热技术的设计和优化组织具有一定的指导意义。  相似文献   

16.
螺旋管紧凑式换热器传热性能分析   总被引:1,自引:0,他引:1  
数值模拟研究了紧凑式小管螺旋管换热器的流动换热特性.螺旋管换热器由35个单管(直管和弯管)构成,管外为空气冷却,管内流过不同温度的液体工质R141B.模拟结果表明,各单根螺旋管内外对流传热系数、温度分布和传热性能,主要受内外流体温度梯度、回流条件、外部空气流速和单根管的传热表面积等因素的影响.  相似文献   

17.
In the present work, the effect of channel cross section on the heat transfer performance of an oblique finned micro-channel heat sink was investigated. Water and Al2O3/water nanofluid of volume fraction 0.25% were used as a coolant. The oblique finned microchannels are designed with three channel cross-sections namely square, semicircle and trapezoidal. The primary work of this paper is to study the heat transfer and hydrodynamic characteristics in the oblique finned microchannel. The experimental setup and procedure are validated using water as coolant in a micro-channel heat sink. Heat transfer and flow characteristics are examined for three cross-sections of varying mass flux. The trapezoidal channel cross-section increases the considerable heat transfer rate improvement for both water and nanofluid by 3.133% and 5.878% compared to square and semicircle cross section. Also, the pressure drop is higher in the trapezoidal cross-section over the square and semicircle cross section. This is due to increase in friction loss of trapezoidal cross section. The results indicate that trapezoidal cross-section oblique finned micro-channel is more suitable for heat transfer in the electronic cooling application.  相似文献   

18.
In this article the effects of internal fins on laminar incompressible fluid flow and heat transfer inside rotating straight pipes and stationary curved pipes are numerically studied under hydrodynamically and thermally fully developed conditions. The fins are assumed to have negligible thickness with the same conditions as the pipe walls. Two cases, constant wall temperature and constant heat flux at the wall, are considered. First the accuracy of the numerical code written by a finite volume method based on SIMPLE algorithm is verified by the available data for the finless rotating straight pipes and stationary curved pipes, and then, the numerical results for those internally finned pipes are investigated in detail. The numerical results for different sizes and numbers of internal fins indicate that the flow and temperature field analogy between internally finned rotating straight pipes and stationary curved pipes still prevail. The effects of Dean number (KL) versus friction factor, Nusselt number, and other non-dimensional parameters are studied in detail. From the numerical results obtained, an optimum fin height about 0.8 of pipe radius is determined for Dean numbers less than 100. At this optimum value, the heat transfer enhancement is maximum, and the heat transfer coefficient appears to be 6 times as that of corresponding finless pipes.  相似文献   

19.
采用数值计算方法对一种应用于半导体制冷片热端散热的翅片式热管散热器进行模拟,探究自然对流条件下不同翅片参数对散热器换热特性的影响。结合多目标遗传算法(NSGA-Ⅱ),以影响散热器散热的两个主要参数——翅片表面传热系数和肋面效率为优化目标,对散热器整体做出综合优化,并对优化结果进行K均值聚类分析,提出了翅片端优化原则。结果表明,肋面效率对散热器性能的影响有限,提高表面传热系数可显著降低散热器总热阻;与未优化方案相比,所选优化方案可使基板热端面温度下降3.5K,散热器热阻降低18.22%。  相似文献   

20.
The turbulent pulsating flow and heat transfer in an internally longitudinal protuberant finned tube was numerically investigated by solving unsteady three‐dimensional elliptical Navier–Stokes equations. The realized k–? turbulent model was adopted. The dynamic behaviors of velocity field, average Nusselt number, and friction number of the internally longitudinal protuberant finned tube were numerically analyzed in a pulsating period, and it was further investigated by changing the frequency of the pulsating flow. It was found that the intensity of heat transfer enhancement increases with an increase of pulsating frequency, while the pressure drop will be increased simultaneously, the intensification of heat transfer in internally longitudinal protuberant finned tubes are gradually better than the pressure drop with an increase of pulsating frequency. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20253  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号