首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal coagulation conditions need to be re-examined when coagulation is coupled to membrane filtration for wastewater treatment. This work focused on the optimization of coagulant dosing in order to control membrane fouling in ultrafiltration (UF), following coagulation for the reclamation of textile wastewater. The effects of pore size and coagulant types and dosages on flux decline were investigated using a stirred-cell UF unit. The flux was greatly enhanced for the UF membrane when a coagulant was added, whereas for the microfiltration (MF) membrane the flux decreased. This could be attributed to changes in the size of coagulated particles and their interaction with membrane pores. At a low dosage (e.g., 0.0371 mM as Al), the polyaluminum chloride (PACl) coagulant was found to control the flux decline most effectively for low ionic-strength wastewater. The optimal dose minimized the fouling and cake layer resistances, although it was sharp and dependent on influent composition. The cake layer protected the membrane from fouling, but it provided additional resistance to permeation. Analyses of turbidity, particle size, and membrane surface exhibited the characteristics of coagulated particles and their cake structures that are closely associated with flux behavior.  相似文献   

2.
Textile industries are rated as the most polluting among all industrial sectors taking into account both wastewater volume and composition. In order to be able to reuse these effluents, membrane technologies have been proven as a viable alternative. However, these technologies show some drawbacks, such as the retentate stream management and the worsening of their performance due to membrane fouling. Therefore, effluents must be pre-treated in order to prevent fouling. Membrane technologies also provide some alternatives for these pre-treatments by means of the application of ceramic ultrafiltration among others.This work studies the performance of ceramic membranes by carrying out experiments with three commercial ceramic membranes with molecular weight cut-offs (MWCO) of 30, 50 and 150 kDa, respectively. Moreover, the effect of cross-flow velocity (CFV) was studied by performing the essays at different flow velocities of 3, 4 and 5 m/s.According to the obtained results, ceramic UF membranes proved to be a feasible pre-treatment alternative. Permeate flux increased as flow velocity was increased for most of the cases, owing to the fact that the cake layer formation was limited. Furthermore, flux decline along operating time was negligible for the higher flow velocities, whereas it was noticeable for the lowest flow velocity tested. For the lowest MWCO analyzed, lower cross-flow velocities were needed in order to limit the cake layer formation and reach the steady-state. This implies that, although fouling was significant for all the three molecular weight cut-off studied, it was much more noticeable when MWCO was increased. Slightly better results in terms of permeate quality were achieved as MWCO was lower. In addition, higher chemical oxygen demand (COD) and conductivity retention coefficients were obtained for the lowest cross-flow velocity. Turbidity and color removals seemed to be more influenced by water composition than CFV, with rejections higher than 99% and between 84 and 98%, respectively.  相似文献   

3.
A biomaterial was successfully synthesized from Plantago ovata by using an FeCl3-induced crude extract (FCE). The potential of FCE to act as a natural coagulant was tested for the pretreatment of real textile wastewater. Tests were performed to evaluate the effects of FCE quantity, salt concentration, and wastewater pH on chemical oxygen demand (COD) reduction during a coagulation/flocculation process. Experimental results indicated that the wastewater could be effectively treated by using a coagulation/flocculation process, where the BOD5/COD ratio of the effluent was improved to 0.48. A low coagulant dose, 1.5mg/L, achieved a high COD removal percentage, 89%, at operational conditions of neutral pH and room temperature. The experimental data revealed that the maximum COD removal occurred at water pH<8. Increasing the salt promoted the COD removal. The settling and filterability characteristics of the sludge were also studied. Scanning electron microscopy and energy dispersive spectroscopy studies were conducted to determine the sludge structure and composition, respectively. Overall, FCE as an eco-friendly biomaterial was revealed to be a very efficient coagulant and a promising option for the removal of COD from wastewaters.  相似文献   

4.
The effects of potassium permanganate(KMnO_4)dosing position on the natural organic matter(NOM)removal as well as membrane fouling were investigated in the coagulation/ultrafiltration combined process.KMnO_4 oxidation altered the NOM characteristics in terms of hydrophobicity and molecular weight,and destroyed humic substances originated from terraneous organisms in raw water.The optimal KMnO_4 dosage was 0.5 mg·L~(-1) in the peroxidation enhanced coagulation process with respect to the dissolved organic carbon(DOC)removal.When KMnO_4 was dosed into both upstream and downstream of coagulation,namely in the proposed twoposition dosing mode,coagulation and KMnO_4 oxidation worked individually on the apparent DOC removal.However,compared to the KMnO_4 addition prior to or after coagulation,the two-position dosing mode dramatically alleviated membrane fouling and reduced fouling irreversibility.This was attributed to the change of NOM characteristics as a result of KMnO_4 addition prior to coagulation and the presence of MnO_2 on membrane surface as a result of KMnO_4 addition prior to ultrafiltration.This work may provide useful information for the application of KMnO_4 oxidation in the coagulation/ultrafiltration combined system.  相似文献   

5.
Foulant interaction and productivity of reverse osmosis (RO) membrane during textile wastewater reclamation were studied. Synthetic textile wastewater composed of salt, surfactant and reactive dye was used in the experiment. RO productivity was assessed using cross-flow membrane filtration unit. The result revealed that surfactant was the major cause of membrane fouling. When the surfactant concentration maintains lower than the critical micelle concentration (CMC), RO productivity was influenced by the concentration of surfactant. Therefore, lowest productivity was observed when the surfactant concentration approached CMC. When the concentration level rose above CMC, the surfactant micelle was formed within the bulk solution and this subsequently yielded an increase in RO productivity. The formed micelle decreased the adsorption capacity of surfactant monomer. Moreover, the appearance of aggregation between surfactant and reactive dye lowered the fouling potential of the mixtures especially when compared to the wastewater containing only surfactant at a higher concentration than CMC.  相似文献   

6.
《Desalination》2007,202(1-3):68-76
Recently there have been many wastewater treatment processes combining different units of process to improve the dissolving and suspension of pollutants in water. The submerged membrane bioreactor (SMBR) system uses a membrane that can produce high quality water for reusing with minimal land demand, instead of using secondary clarifier as biological treatment, sand filters, ozonation, GAC or disinfection processes as a tertiary treatment. For the development of the bio-filter membrane bioreactor (BMB) system as a submerged membrane bioreactor in this study the new wastewater treatment system will consist of a rapid bio-filter clarifier, a bioreactor and a hollow fiber membrane and plate membrane, to help find the optimal process to meet the regulations for reused water. This study was performed to evaluate the BMB reusing system, made up of a rapid bio-filter clarifier, an activated sludge bioreactor and a membrane module. The rapid bio-filter clarifier replaced a conventional primary sedimentation and removed SS, BOD and COD to 40, 20, and 20%, while the turbidity and color were removed by 30 and 10% respectively. This means that the rapid bio-filter clarifier having an HRT value 5.2 min can replace the conventional primary sedimentation of the HRT value of 1.5–2.5 h. Also the BMB reusing system could achieve the effluent quality of BOD < 5 mg/L, COD < 10 mg/L, turbidity < 0.5 NTU, and color < 20 unit respectively, and total coliforms did not appear. This means this system can meet water quality standard for water reusing systems. The flux of the plate membrane and hollow Fiber membrane were 120–140 L/m2 h bar and 60–90 L/m2 h bar; much more water could permeate the plate type membrane than hollow fiber type membrane. Plus the total resistance of hollow fiber type membrane was higher than plate type membrane.  相似文献   

7.
J.C. Zhang  Y.H. Wang  J.Y. Hu  W.J. Ng 《Desalination》2005,174(3):247-256
This laboratory scale study investigated the effectiveness of ultrafiltration (UF) technology for treatment of refinery wastewater using powdered activated carbons (PACs) and coagulant. Flux decline, removal rates of total organic compounds (TOCs) and the possibilities of membrane cleaning during intermittent backwashing were studied. Addition of two kinds of typical PACs, PACs-1 and PACs-2, showed that the UF unit performance by adding PACs-2 was better than that of PACs-1. Suitable amounts were 20 mg.L−1. When different kinds of coagulant, HYM, HY-3, HYC-601 and HCA, were added into the wastewater samples, respectively, it indicated that the HCA system was well resistant to membrane fouling. Investigation also showed that the UF unit performance could be significantly improved by simultaneously adding 15 mg.L−1 of PACs-2 and 0.8 ml.L−1 of HCA into the system. The removal rates of TOCs in the wastewater were over 99%.  相似文献   

8.
Textile effluents usually contain high concentrations of inorganics as well as organics, and the therefore difficult to treat. Membrane processes can be used for many of these wastewaters in the textile industry. Two typical examples are discussed: (1) the use of nanofiltration for the treatment of exhausted dye baths, in view of water recycling, and (2) the use of ultrafiltration for the removal of spin finish from waste water resulting from rinsing of textile fibres. Both applications are in principle feasible, but in practice the process is negatively influenced by membrane fouling. In the first application, fouling is assumed to be caused by (ad)sorption of organic compounds, which has a large influence because of the high concentrations used in textile dyeing. Furthermore, the high salt concentrations result in a decrease of the effective driving force because of the high osmotic pressures obtained for typical dye baths. Experimental results are discussed, and the applicability of nanofiltration is related to the characteristics of the dye baths for different dyeing methods. In the second application, the concentration of organic compounds is relatively low, but because of the hydrophobic nature of the spin finish compounds, a significant effect of membrane fouling is expected. An improvement is suggested by using nanofiltration membranes instead of ultrafiltration membranes.  相似文献   

9.
10.
采用新型含锆聚合混凝剂对珠江原水进行混凝处理,同时与聚合氯化铝和硫酸铝比较混凝效果。结果表明:新型混凝剂在投加量为0.05 mmol/L时,浊度的去除率达到87%;进一步增大其投加量,浊度的去除率可达到96.3%以上;随着pH值的升高,浊度和UV254的去除率均先升后将;在pH值为4.4左右时,处理效果最优。新型混凝剂具有反应快、形成絮体大而密实、絮体沉降快、浊度去除率高等优点,是一种潜在的高效水处理药剂。  相似文献   

11.
As a service to readers who understand German, French or Spanish better than English, the abstract for the research article in this issue follow in these languages.  相似文献   

12.
The performance of a submerged membrane bioreactor (sMBR) for municipal wastewater reclamation and re-use was compared with that of a current classic activated sludge process (CASP). The average chemical oxygen demand (COD) of CASP effluent was 75 mg/l, while the average COD of sMBR filtrate was 15 mg/l. In general, COD removal was above 98%. However, the best results were obtained at a sludge rentention time (SRT) of 50 days. The total phosphorus (TP) content of the filtrate decreased to a level <1 mg/l under aerobic conditions in which aeration occurred continuously. It was shown that the filtrate TP and orthoposphate (Orto-P) concentrations increased dramatically during the periods of intermittent aeration because phosphorus is released under anoxic conditions. In the CASP effluent, the average TP and Orto-P were 7.9 mg/l and 7.1 mg/l, respectively. The filtrate was free of suspended solids (SS) and total coliform bacteria. The effluent SS in the CASP was 40 mg/l. The turbidity removal in the sMBR reached almost 99%, i.e. generally less than 1 NTU, while the average turbidity of the CASP effluent was almost 15 NTU. The removal of ammonium nitrogen (NH4+-N) in the sMBR was almost 99.8%. In addition, the nitrate concentration in the filtrate decreased to 2.4 mg/l under both aerobic & anoxic conditions. It was shown that both nitrification and denitrification could be successfully reduced through intermittent aeration. Average total Kjeldehl nitrogen (TKN) and NH4+-N in the CASP effluent were 30.2 mg/l and 20 mg/l, respectively, i.e. the nitrification efficiency was 42.9%, and the denitrification value was not available. When these results are compared with those in the CASP, it indicated that the sMBR could be successfully used for reclamation and re-use of municipal wastewater.  相似文献   

13.
The treatment of a wastewater taken from a cotton textile mill was investigated using an anaerobic/aerobic sequential system during an operational period of 87 days. The process units consisted of an upflow anaerobic sludge blanket (UASB) reactor and a continuous stirred tank reactor (CSTR). Wastewater characterization was performed before feeding the reactor system. Glucose‐COD, and azo dyes were added to the textile wastewater for comparative purposes in the final period of operation. The pH values in the effluent of the UASB reactor were suitable for optimal anaerobic treatment in all runs. The biodegradable part of the COD in wastewater was removed effectively, with the anaerobic stage improving the biodegradability of wastewater entering the aerobic stage. The UASB reactor permitted COD and color removals of 9–51% and 46–55%, respectively, at a hydraulic retention time (HRT) of 30 h. COD removal efficiencies were between 40 and 85% and color removal efficiencies were 39–81% in normal and artificially‐colored wastewaters at a total HRT of 5.75 days in the UASB/CSTR reactor system. Benzidine produced from the cleavage of azo bond in the anaerobic stage was effectively removed in the aerobic stage, and was identified by comparison of its HPLC spectrum with that of an authentic specimen. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
通过非溶剂致相分离(NIPS)法制备了苯乙烯-马来酸酐共聚物(SMA)/氯化聚氯乙烯(CPVC)共混超滤膜,探讨了凝固浴中不同溶剂(DMAc)含量对其超滤膜表面酸酐基团偏析程度、微观结构、亲水性、水通量、截留率和抗污染的影响。结果表明:凝固浴中溶剂含量的增加抑制了酸酐基团向膜表面的偏析,导致亲水性减弱;同时,铸膜液中溶剂与水分子之间扩散速率的变小引起延迟分相,使得膜表面孔径变小和分布变窄。当溶剂质量分数为3%时,超滤膜对牛血清白蛋白(BSA)截留率提升至98.10%、通量恢复率为96.82%,且不可逆污染率降为3.77%,表明凝固浴中适量的溶剂可进一步提高超滤膜抗污染性能。  相似文献   

15.
The objectives of this research were to evaluate two different processes using for wastewater reclamation in a hightech industrial park area in Taiwan. The major units of the first AC-RO-IE system included sand filter, an activated carbon (AC) bed, microfiltration module, a reverse osmosis (RO) membrane and ionic-exchange (IE) columns. The second DAF-AC-RO system was comprised of coagulation/flocculation, dissolved air flotation (DAF), an activated carbon bed, microfiltration module and reverse osmosis membrane units. This study was carried out at a pilot-scale plant in situ that operated for approximately 1 year. According to the long-term experimental results, both the AC-RO-IE and the DAF-AC-RO processes illustrated excellent performances on inorganic and organic contaminant removal. Comparing the removal efficiency of the filtration-AC units in the AC-RO-IE system with the coagulation-DAF-AC units in the DAF-AC-RO system, the removal efficiency of TDS, SiO2 and COD increased by 19.8%, 70.1% and 44.4% in the latter system, respectively. In addition, the combination of PAC-coagulation and DAF units could improve hardness removal, modify the form of dissolved silica, and reduce the SDI and MFI values. It showed good potential as a pretreatment unit in wastewater reclamation processes. Therefore, based on the reclaimed wastewater quality and process operational stability, the DAF-AC-RO system was suggested as a potential process for further application.  相似文献   

16.
The significant improvements of membrane technology in reliability and cost effectiveness have increased the reuse probability and recycling extent of dairy wastewater. However, membrane fouling still remains a major bottleneck in wide application. In order to solve the problem, this paper investigated the possibility and applicability of coagulation-membrane bioreactor (MBR) hybrid system in reclaiming dairy wastewater. A comparative experiment based on the removal efficiencies and the membrane performance was designed to achieve the purpose. The results showed that polyaluminium chloride as the appropriate coagulant in coagulation process was effective for turbidity removal. Coagulation process played a very important role in stabilizing the effluent of MBR and the level of transmembrane pressure. MBR was a crucial process in turbidity and aluminum removal. MBR had the capability to resist shock loading and to maintain the high COD removal. Biological flocs in MBR could improve the fouling level of membrane. The hybrid system reduced 98% COD from the original and COD value of the wastewater came down to 8 mg/L. The combination of coagulation with MBR presents the possibility and applicability to reclaim effluent in dairy industries.  相似文献   

17.
In this study the secondary effluent after ODOBEZ system processing from a textile dyeing factory was recycledand reused in a dyeing bath. A pilot-scale combined system of a bio-activated carbon reactor (BAC) and membrane separation module (MS) was constructed and studied in detail. Through the efficacies of adsorption as well as biodegradation in BAC, the quality of secondary effluent can be improved further, and then it can be reclaimed and reused in a dyeing bath by using a membrane separation module to reduce the conductivity of the wastewater. This integrated system not only can decrease the frequencies of back washing and replacement of activated carbon via special bio-augmentation, but also alleviate the damage and fouling of membrane due to the further reductions in chemical oxygen demand (COD), suspended solids and color of influent after BAC; this lengthens the lifetime of membranes. In addition to the recycle and reuse fraction of the secondary wastewater in a dyeing bath, the final concentrated retentate after processing in this integrated system meets the stipulated regulations and can be discharged directly with no additional treatments. Once the COD of secondary inflow falls in the range of 100-200 mg/L, the COD of outflow after BAC can be reduced to the range of 50-80 mg/L with a hydraulic residence time of 4 h. In this situation the percentage of water reclamation can reach above 50%, and the final concentrated retentate can be discharged directly. The results of the dyeing tests by using recycling water showed that color deviation indexes, ΔE, were always less than 0.5, which was the criterion for laboratory-scale dyeing tests. After almost a year of operation, a detailed economics assessment was made, and it was found that a total cost 9.14 $NTD was enough to reclaim per cubic meter textile wastewater to a dyeing bath, which included costs in membrane replacement, activated carbon replacement, reagents for membrane washing and power consumption.  相似文献   

18.
综述了近年来国内外超滤膜分离技术应用于乳化油废水处理的研究进展,着重介绍了超滤处理工业乳化油废水的分离性能,以及超滤过程存在的问题和解决途径.针对实际运行过程中产生的膜污染现象,在新膜材料、膜组件改进和耦合工艺3方面进行了阐述.最后对今后的研究方向提出了建议.  相似文献   

19.
采用混凝实验,对比研究了复合铝锌铁(PAZF)混凝剂及其有机改性剂[PPAZF-n,n为聚丙烯酰胺(PAM)加入量]对高浊度模拟水样的处理效果。实验结果表明,PPAZF-n的除浊效果优于PAZF,且PPAZF-5的除浊效率最高。当投药量为3mL时,PPAZF-2、PPAZF-5及PPAZF-10的余浊分别为1.93、1.16及1.99 NTU,而PAZF的余浊为2.41NTU。  相似文献   

20.
采用水解酸化池—兼氧/好氧池—曝气生物滤池联合处理工艺改造杭州下沙经济开发区某纺织印染企业废水处理系统,使得当进水COD、色度、SS平均值分别为1 580 mg/L、359倍、750 mg/L时,相应的出水平均值分别为41 mg/L、15倍、12 mg/L,去除率分别为97.4%、95.6%、98.4%,其出水水质能够满足该纺织印染企业的回用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号