首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impinging flame jets are widely used in applications where high heat-transfer rates are needed, for instance in the glass industry. During the heating process of glass products, internal thermal stresses develop in the material due to temperature gradients. In order to avoid excessive thermal gradients as well as overheating of the hot spots, it is important to know and control the temperature distribution inside a heated glass product. Therefore, it is advantageous to know the relation describing the convective heat–flux distribution at the heated side of a glass product. In a previous work, we presented a heat–flux relation applicable for the hot spot of the target [M.J. Remie, G. Särner, M.F.G. Cremers, A. Omrane, K.R.A.M. Schreel, M. Aldén, L.P.H. de Goey, Extended heat-transfer relation for an impinging laminar flame jet to a flat plate, Int. J. Heat Mass Transfer, in press]. In this paper, we present an extension of this relation, which is applicable for larger radial distances from the hot spot.  相似文献   

2.
A numerical investigation has been performed to study the effect of flow pulsations on time-averaged Nusselt number under a laminar impinging jet. The parameters considered are as follows: time-averaged jet Reynolds number (100 ≤ Re ≤ 1000), frequency of pulsation (1 ≤ f ≤ 20 Hz), and nozzle-to-target spacing (4 ≤ H/d ≤ 9). The combination of Re = 300, f = 5 Hz and H/d = 9 was found to give the best heat transfer performance. Interestingly, it was found that the onset of separation at the wall jet region of pulsating impinging jet is associated with the point of constant Nusselt number during the oscillation cycle. Downstream of the separation point in the wall jet region, the Nusselt number waveform fluctuates out of phase with the inlet velocity. Within one oscillation, large vortices existing during the minimum velocity state are broken into two smaller vortices when the flow is accelerated to reach the maximum velocity, after which the two vortices merge again when the flow decelerates back to the minimum velocity.  相似文献   

3.
This paper is the second part of the experimental study on exploring the feasibility of inverse diffusion flame (IDF) for impingement heating. The structures and heat transfer characteristics of an impinging IDF jet have been studied. Four types of impinging flame structure have been identified and reported. The distributions of the wall static pressure are measured and presented. The influences of the global equivalence ratio (), the Reynolds number of the air jet (Reair), and the non-dimensional burner-to-plate distance (H/dair), on the flame structure, and the local and averaged heat transfer characteristics, are reported and discussed. The highest heat transfer occurs when the tip of the flame inner reaction zone impinges on the plate. The heat transfer rate from the impinging IDF is found to be higher than that in the premixed flame jet due to the augmented turbulence level originated from the flame neck. This high heat transfer rate, together with its in-born advantage of no danger of flashback and low level of nitrogen oxides emission, demonstrates the blue, dual-structured, triple-layered IDF is a desirable alternative for impingement heating.  相似文献   

4.
Many industrial applications use flame impingement to obtain high heat-transfer rates. An analytical expression for the convective part of the heat transfer of a flame jet to a plate is derived. Therefore, the flame jet is approximated by a hot inert jet. In contradiction with existing convective heat-transfer relations, our analytical solution is applicable not only for large distances between the jet and the plate, but also for close spacings. Multiplying the convective heat transfer by a factor which takes chemical recombination in the cold boundary layer into account, results in an expression for the heat flux from a flame jet to the hot spot of a heated plate. Numerical and experimental validation show good agreement.  相似文献   

5.
Experiments were performed to study the heat transfer characteristics of a premixed butane/air slot flame jet impinging normally on a horizontal rectangular plate. The effects of Reynolds number and the nozzle-to-plate distance on heat transfer were examined. The Reynolds number varied from 800 to 1700, while the nozzle-to-plate distance ranged from 2de to 12de. Comparisons were made between the heat transfer characteristics of slot jets and circular jets under the same experimental conditions. It was found that the slot flame jet produces more uniform heat flux profile and larger averaged heat fluxes than the circular flame jet.  相似文献   

6.
This paper presents the results of an experimental study on the heat transfer characteristics of an inverse diffusion flame (IDF) impinging vertically upwards on a horizontal copper plate. The IDF burner used in the experiment has a central air jet surrounded circumferentially by 12 outer fuel jets. The heat flux at the stagnation point and the radial distribution of heat flux were measured with a heat flux sensor. The effects of Reynolds number, overall equivalence ratio, and nozzle-to-plate distance on the heat flux were investigated. The area-averaged heat flux and the heat transfer efficiency were calculated from the radial heat flux within a radial distance of 50 mm from the stagnation point of the flame, for air jet Reynolds number (Reair) of 2000, 2500 and 3000, for overall equivalence ratios (Φ) of 0.8–1.8, at normalized nozzle-to-plate distances (H/dIDF) between 4 and 10. Similar experiments were carried out on a circular premixed impinging flame for comparison.It was found that, for the impinging IDF, for Φ of 1.2 or higher, the area-averaged heat flux increased as the Reair or Φ was increased while the heat transfer efficiency decreased when these two parameters increased. Thus for the IDF, the maximum heat transfer efficiency occurred at Reair = 2000 and Φ = 1.2. At lower Φ, the heat transfer efficiency could increase when Φ was decreased. For the range of H/dIDF investigated, there was certain variation in the heat transfer efficiency with H/dIDF. The heat transfer efficiency of the premixed flame has a peak value at Φ = 1.0 at H/dP = 2 and decreases at higher Φ and higher H/dP. The IDF could have comparable or even higher heat transfer efficiency than a premixed flame.  相似文献   

7.
A model using an analytical/empirical approach has been developed to predict the rate of heat transfer in the stagnation region of a planar jet impinging on a horizontal flat surface. The model has been developed based on the hypothesis that bubble-induced mixing would result in enhanced or additional diffusivity. The additional diffusivity has been included in the diffusion term of the conservation equations. The value of the effective diffusivity has been correlated with jet parameters (velocity and temperature) and surface temperature using experimental data. The important aspects of the bubble dynamics (generation frequency and average bubble diameter) have been acquired using high-speed imaging and an intrusive optical probe. The applicability of the proposed model has been investigated under conditions of partial and fully-developed nucleate boiling. Experiments have been carried out using water at atmospheric pressure, mass flux in the range of 388–1649 kg/m2 s, degree of sub-cooling in the range of 10–28 °C, and surface temperature in the range of 75–120 °C. Results showed that the proposed model is able to predict the surface heat flux with reasonable accuracy (+30% and ?15%).  相似文献   

8.
Recent technological developments have lead to significant increase in the generated heat by electronic and optical components. The removal of high heat fluxes can be successfully treated by several methods, e.g. impinging jets. Further improvement is offered by incorporating arrays of jets or causing jets to pulsate. The research reported herein introduces a new method which is based on actuation of a slab against a two dimensional steady, impinging, laminar, liquid micro-jet. This leads to enhanced heat transfer in the wall region of the jet. An experimental setup which included a piezoelectric (PZT) actuator, a dedicated silicon chip and a steady, slot, impinging jet, was assembled. Using a high speed infrared (IR) radiometer, the cooling process of the chip was recorded and the heat transfer enhancement values were determined for normalized actuation amplitudes, Reynolds and Strouhal numbers in the ranges of 0.45 < δ < 0.75, 756 < Re < 1260 and 0 < St < 0.052, respectively. It was experimentally found that heat transfer coefficients were enhanced by up to 34%.  相似文献   

9.
The present work is concerned with exploring the potential of refractive index-based imaging techniques for investigating the heat transfer characteristics of impinging turbulent synthetic jets. The line-of-sight images of the convective field have been recorded using a Mach Zehnder interferometer. Heat transfer experiments have been conducted in infinite fringe setting mode of the interferometer with air as the working fluid. The effect of the excitation frequency of the synthetic jet on the resultant temperature distribution and local heat transfer characteristics has been studied. The fringe patterns recorded in the form of interferograms have first been qualitatively discussed and thereafter, quantitatively analyzed to determine the two-dimensional temperature field. Local heat transfer coefficients along the width of the heated copper block have been determined from the temperature field distribution thus obtained from the interferograms. The results have been presented in the form of interferometric images recorded as a function of frequency of the synthetic jet, corresponding two-dimensional temperature distributions and local variation of heat transfer coefficients. Interferometric measurements predicted maxima of the heat transfer coefficient at the resonance frequency of the synthetic jet and at a jet-to-plate surface spacing (z/d) of 3. These observations correlate well with the thermocouple-based measurements of temperature and heat transfer coefficient performed simultaneously during the experiments. The interferometry-based study, as reported in the present work for the first time in the context of synthetic jets, highlights the importance of refractive index-based imaging techniques as a potential tool for understanding the local heat transfer characteristics of synthetic jets.  相似文献   

10.
Axial and radial profiles of time-averaged local heat fluxes of methane-air jet flames impinging normal to a cooled plate are reported, as functions of equivalence ratio, Reynolds number, and nozzle-plate spacing. Time-resolved behavior for these conditions is examined in the companion paper, Part II. Flame structure was studied visually and photographed. Both premixed and diffusion flame behavior was observed. Nozzle-stabilized flames revealed a stable, axisymmetric flame structure at nozzle-plate spacings less than 14 diameters. At greater nozzle-plate spacings, buoyancy-induced instabilities caused the flame to oscillate visibly. Lifted flames exhibited varied flame structures dependent upon the Reynolds number, equivalence ratio, and nozzle-plate spacing, stabilizing in the free jet, at the stagnation zone, or downstream in the wall jet. Local heat flux measurements made in the stagnation zone and along the plate adjacent to the wall jet flame revealed correlation of the local heat flux to the flame structure. Negative heat fluxes resulted from cool gases impinging on the hotter plate. The magnitude of positive heat fluxes depended on the proximity of the flame to the sensor surface, the rate of heat release, and the local molecular and turbulent transport.  相似文献   

11.
This is the second of a two-part paper on heat transfer from an impinging flame jet reporting time-resolved results. Axial and radial profiles of time-resolved local heat fluxes of methane-air jet flames impinging normal to a cooled plate are reported, including the root mean square (RMS), probability distribution function (PDF), and the power spectral density (PSD) of the heat flux fluctuations as a function of equivalence ratio, Reynolds number, and nozzle-plate spacing. The RMS, PDF, and PSD of the heat flux signal from the stagnation point and along the plate revealed correlation of the local heat flux to the flame structure. Impingement heat flux from premixed nozzle-stabilized flames was characterized by small RMS fluctuations and frequency behavior indicating the formation of weak, buoyancy-driven vortex structures at the shear layer between the hot gases surrounding the flame and the ambient air. Conversely, diffusion flames were characterized by much larger RMS fluctuations and PSD’s indicating the development of much larger vortex structures. Time-resolved heat flux for lifted flames varied according to flame structure and combustion intensity. PSD magnitudes were related to the range of temperatures in the flow; greater temperature ranges produced larger heat flux variations. The contributing frequencies were related to the duration of the heat flux fluctuation; more rapid changes in heat flux produced higher frequency content.  相似文献   

12.
An experimental investigation is carried out on the entrance region heat transfer in a parallel plate channel downstream of a jet array located in one of the plates. The jet impingement surface is kept isothermal while the opposing surface, containing the jet array, is adiabatic. The focus of the investigation is the systematic study of the effect of flow rate and array geometric parameters on local Nusselt numbers in the entrance region of the channel immediately downstream of the array. To place these results in context, Nusselt numbers opposite the array and in the fully developed region downstream of the channel entrance are also included. In the entrance region, the ratio of the local to fully developed Nusselt number is independent of the channel Reynolds number, and the effects of some jet array geometric parameters are significant. These effects become negligible within 10 hydraulic diameters from the channel entrance. The entrance length is about 21 hydraulic diameters. The fully developed Nusselt numbers agree well with previous measurements. Empirical correlations are developed to fit the observations.  相似文献   

13.
圆形冲击射流传热性能的实验研究   总被引:5,自引:1,他引:5  
应用萘升华传质/传热比拟技术,对单个圆形射流在不同喷嘴到被冲击表面距离(1≤H/D≤12),在7×103≤R e≤1.9×104时,进行了局部传质/传热实验;研究了不同喷嘴到被冲击表面距离和不同R e对单个圆形射流局部换热特性的影响。单个圆形射流局部传热系数随着R e的增加而大幅度增加,R e是影响局部换热系数的主要因素。在同一R e下局部换热系数沿轴向非单调变化,在驻点处当H/D≌6时换热系数达到峰值;H/D<6时,局部换热系数沿径向有两个峰值;随H/D的增加,中心区局部N u减小,但影响范围变大。  相似文献   

14.
The objective of this work is to carry out a numerical investigation to examine the effects of geometric parameters on the confined impinging jet heat transfer. Parameters such as Nusselt number, Reynolds number, H/W have been studied. Nozzle width H ranges from 0.6 mm to 2 mm, and nozzle-to-plate spacing W ranges from 0.5 mm to 10 mm. The jet flow is in the range of laminar flow with Reynolds number from 26.8 to 1000. This paper presents distributions of target surface temperature, local and average Nusselt number on the target plate. Pressure drop for different H/W is also obtained. This study can provide useful information to the application of impinging jet heat transfer in industry.  相似文献   

15.
Classic and high speed particle image velocimetry and infrared thermography are used to investigate the behavior of a round jet impinging on a flat plate for a Reynolds number 28,000, for orifice-to-plate distances of 3 or 5 nozzle diameters and for two different nozzles, a contraction and a long tube. The contraction nozzle reveals a different heat transfer distribution on the impinging plate compared to the long tube case. The jet can be excited by a loudspeaker at Strouhal numbers 0.26, 0.51 and 0.79. This acoustic forcing changes the jet structure, modifying annular vortex rings in the shear layer of the jet and increasing the turbulent values. The heat transfer is therefore modified, resulting in an increase of the Nusselt number near the jet axis and an alleviation or a shift of the secondary peak.  相似文献   

16.
This is the first part of the experimental investigation on the feasibility of inverse diffusion flame (IDF) for impingement heating. This part is aimed to identify the favorable IDF structure for impingement heating. Seven IDF structures have been observed altogether. Among them the favorable flame structure for impingement heating is identified to comprise a short base diffusion flame and a long premixed flame torch, separated by a contracted flame neck, which acts as a mixing zone for air and fuel and stabilizes the premixed flame torch. This unique flame structure allows the IDF to possess the advantages of both premixed and diffusion flames, with no flashback, high flame temperature and less or no soot emission. The emission measurement shows it emits low level of nitrogen oxides. Its favorable thermal structure and emission characteristics make it a desirable option for impingement heating.  相似文献   

17.
18.
A numerical study was carried out of heat transfer under a pulsating turbulent slot impinging jet. The jet velocity was varied in an intermittent (on–off) fashion. The effects of the time-mean jet Reynolds number, temperature difference between the jet flow and the impinging surface, nozzle-to-target distance as well as the frequency on heat and mass transfer were examined. The numerical results indicate significant heat transfer enhancement due to intermittent pulsation of the jet flow over a wide range of conditions for both cooling and heating cases. Simulations of the flow and temperature fields show that the instantaneous heat transfer rate on the target surface is highly dependent on the hydrodynamic and thermal boundary layer development with time.  相似文献   

19.
20.
Previous studies on boiling heat transfer by impinging jets were mainly concerned with the impinging point by using small heat transfer surfaces of about 20 mm. An experimental study was made of the boiling heat transfer to an impinging water jet on a massive hot block. The upward heating surface was made of copper, its diameter and the nozzle diameter being 80 and 2.2 mm, respectively. The velocity of the impinging jet was varied between 0.6 and 2.1 m/s. Saturated water impinged normally on the heating surface, flowed radially, and subsequently dispersed into the atmosphere. It is clarified in the present study that heat transfer characteristics vary with the temperature of the heat transfer surface, and also with the distance from the impinging point. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 418–427, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号