首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
Implementation of nanofiltration (NF) and reverse osmosis (RO) processes in treating traditional water sources can provide a steady‐state level of removal that eliminates the need for regeneration of ion exchange resins or granular activated carbon. Moreover, RO can help meet future potable water demands through desalination of seawater and brackish waters. The productivity of membrane filtration is severely lowered by fouling, which is caused by the accumulation of foreign substances on the surface and/or within pores of membranes. Microbial fouling, or biofouling, is the growth of microorganisms on the membrane surface and on the feed spacer as present between the envelopes. The fouling of membranes has demanded and continues to demand considerable attention from industry and research communities. Many of these applications use membranes in a spiral wound configuration that contains a feed spacer. The goal of this project was to develop low‐biofouling polypropylene (PP) spacers through the functionalization of PP by a spacer arm with metal chelating ligands charged with biocidal metal ions, investigate the use of this metal‐charged polypropylene (PP) feed spacers that target biofouling control, and to use some traditional and one novel techniques to autopsy the membranes after filtration to gain a better understanding of the biofouling mechanism and how the modified spacers are affecting it. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Nanofiltration membranes (NF) have applications in several areas. One of the main applications has been in watertreatment for drinking water production as well as wastewater treatment. NF can either be used to treat all kinds of water including ground, surface, and wastewater or used as a pretreatment for desalination. The introduction of NF as a pretreatment is considered a breakthrough for the desalination process. NF membranes have been shown to be able to remove turbidity, microorganisms and hardness, as well as a fraction of the dissolved salts. This results in a significantly lower operating pressure and thus provides a much more energy-efficient process. Similar to other membrane processes, a major problem in NF membrane applications is fouling. Several studies have investigated the mechanisms of fouling in NF membranes and suggested methods to minimize and control the fouling of NF membranes. For NF membrane characterizations and process prediction, modeling of NF processes and the use of atomic force microscopy (AFM) are very important. The ability to predict the performance of NF processes will lead to a lower number of experiments, saving of time and money, and help to understand the separation mechanisms during NF. A comprehensive review of NF in water treatments is presented including a review of the applications of NF in treating water as well as in the pretreatment process for desalination; the mechanism as well as minimization of NF membrane fouling problems; and theories for modelling and transport of salt, charged and noncharged organic compounds in NF membranes. The review will also address the application of AFM in studying the morphology of membrane surfaces as part of the NF membrane characterization.  相似文献   

3.
The influence of membrane fouling on the retention of four trace organic contaminants - namely sulfamethoxazole, ibuprofen, carbamazepine, and triclosan - by nanofiltration membranes was investigated in this study. Humic acid, alginate, bovine serum albumin, and silica colloids were selected as model foulants to simulate various organic fractions and colloidal matter that are found in secondary treated effluent and surface water. The effects of membrane fouling on the separation process was delineated by comparing retention values of clean and fouled membranes and relate them to the membrane properties (under both clean and fouled conditions) as well as physicochemical characteristics of the trace organic contaminants. Membrane fouling was dependent on the physicochemical properties of the model foulants. Initial foulant-membrane interaction could probably be a major factor governing the process of membrane fouling particularly by the organic foulants. Such membrane-foulant interaction was also a dominating factor governing the effects of membrane fouling on the membrane separation efficacy. In good agreement with our previous study (Nghiem and Hawkes, 2007 [1]), the effects of fouling on retention were found to be membrane pore size dependent. In addition, results reported here suggest that these effects could also be foulant dependent. It was probable that the influence of membrane fouling on trace organic retention could be governed by four distinctive mechanisms: modification of the membrane charge surface, pore blocking, cake enhanced concentration polarisation, and modification of the membrane hydrophobicity. The presence of the fouling layer could affect the retention behavior of charged solutes by altering the membrane surface charge density. While the effect of surface charge modification was clear for inorganic salts, it was less obvious for the negatively charged pharmaceutical species (sulfamethoxazole and ibuprofen) examined in this investigation, possibly due to the interference of the pore blocking mechanism. Evidence of the cake enhanced concentration polarisation effect was quite clear, particularly under colloidal fouling conditions. In addition, organic fouling could also interfere with the solute-membrane interaction, and therefore, exerted considerable influence on the separation process of the hydrophobic trace organic contaminant triclosan.  相似文献   

4.
The variations of porosity parameters of some reverse osmosis (RO) and nanofiltration (NF) polyamide thin-film composite membranes were determined in order to explain the changes of membranes' performances caused by membrane fouling and chemical cleaning of the fouled membranes. The pore size distribution curves and the effective number of pores in the membrane surface indicated plugging of the tight network pores in the membrane surface and even their disappearance during fouling. The enlargement of the wider aggregate pores was responsible for the noticed reduction in salt rejection. The initial pore structure of the fouled RO membrane was restored by immediate chemical cleaning. A delay of chemical cleaning of the fouled membranes led to irreversible changes in the porous structure of both the RO and NF membranes, which were caused by a microbial activity.  相似文献   

5.
Cellulose nanocrystals (CNCs) are biodegradable nanoparticles with a high aspect ratio and abundant surface hydroxyl groups resulting in negatively charged hydrophilic surfaces that make them an ideal candidate to be incorporated in thin-film nanocomposite (TFN) membranes. In this study, we modified the CNCs via acetylation (ACNCs) to reduce their hydrophilicity and via reaction with L-cysteine (CysCNCs) to impart them with functionality that promoted their interaction with the trimesoyl chloride organic monomer used in the preparation of the poly(amide) layer of the TFN membranes. These modifications allowed us to question in which monomer solution the nanoparticles should be dispersed. Addition of the unmodified CNCs in either the aqueous or organic monomer solution showed little difference in membrane performance. However, the addition of either the ACNCs or the CysCNCs to the organic monomer solution led to a significant increase in membrane performance in reverse osmosis (RO) and nanofiltration (NF) systems compared to their addition to the aqueous monomer solution. In addition, the CysCNCs exhibited performance very near the upper-bound line for RO and NF.  相似文献   

6.
For enhanced antifouling surface properties, the alumina membranes were modified through a simple silanization process. Three organosilanes presenting neutral, positive, and negative charges were allowed to graft onto alumina membranes. A small decrease in the pore size and the successful chemical binding of organosilanes were confirmed, respectively. The membrane filtration test using humic acid (HA) was conducted to evaluate the effect of surface charges on fouling resistance. The neutral and negatively charged membranes achieved remarkable flux behaviour due to no charge interaction and electrostatic repulsion force, respectively. Especially, the negatively charged membranes presented the lowest flux decline, the highest flux recovery, and the lowest membrane fouling.  相似文献   

7.
《分离科学与技术》2012,47(17):2642-2649
Nanofiltration (NF) membrane configuration for fluoride and arsenic removal from groundwater has a key role in controlling operation performances and membrane fouling. Some bench-scale contrast experiments using commercial NF membranes were done to obtain the optimum arrangement performances. The NF membrane arrays included one-stage, two-stage, and three-stage systems. The NF membrane surface was negatively charged above its isoelectric point (approximately at pH 5.9–6.4). Accordingly, the raw groundwater was initially adjusted to a neutral or alkaline pH to enhance the effect of electrical charge repulsion and improve the ion removal efficiencies by NF. The encouraging results indicated that a membrane in a parallel-linear arrangement with staging 2:1 was the preferable arrangement to remove fluoride and arsenic from low-salinity groundwater in rural areas of China. With this optimal arrangement, the NF system obtained fluoride and arsenic removal efficiencies of 70?73% and 92?94% respectively, a preferable permeate flux of 73.37 L h?1 m2 and acceptable water flux recovery rate of 65% at 16°C. This optimal arrangement can further limit the potential membrane fouling by lowering the interstage Reynolds number. Moreover, the water product cost was lowest by the NF system with this optimal arrangement.  相似文献   

8.
《Desalination》2007,202(1-3):231-238
Two different NF membranes were operated to remove natural organic matter (NOM) originating from Dongbok Lake in Korea. Coagulation/sedimentation and sand filtration treated waters as membrane feed waters were used. The tested NF membranes were autopsied to compare the fouling propensity from different feed waters using pure water and a NaOH solution. Organic/inorganic foulants onto membrane surface were analyzed in terms of molecular weight (MW) distribution, structure, and IR analysis, and fouled membranes were also characterized in terms of pore size distribution, surface charge, and SEM–EDS analysis. Polysaccharides and/or N-acetyl aminosugar groups with MW ranging from 30,000 to 50,000 g/mol were identified using HP-SEC and IR analysis. Inorganic foulants (i.e., Si and Al) were also fouled onto the membrane surface and/or pores, and it is effectively removed by caustic cleaning, not pure water. Caustic cleaning was proven to be effective to remove both fouled NF membranes as a basis of flux recovery, and it could efficiently desorb the hydrophobic NOM constituents or protein-like substances from the relatively hydrophilic and less negatively charged NF membranes.  相似文献   

9.
罗丹  晏云鹏  全学军 《化工进展》2015,34(8):3133-3141
垃圾渗滤液是一种重污染的有毒有机废水,对生态环境造成了严重的威胁。本文综述了垃圾渗滤液现有的膜处理技术,与传统处理工艺相比,膜技术具有低能高效等优点,是未来渗滤液处理技术的重要发展方向。由于垃圾渗滤液组成的复杂性,根据不同处理目的,微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)4种膜在垃圾渗滤液处理中都得到了一定的应用。总结发现,其中MF和UF对渗滤液的处理效果较差,一般作为渗滤液的预处理技术;NF和RO对渗滤液的处理效果较好,主要作为其深度处理技术。然而,膜污染阻碍了膜技术在渗滤液处理方面的发展与应用,为此可通过研究开发新型膜材料、有效的预处理技术和膜分离工艺优化等方面来防止膜污染的发生,以便膜技术在渗滤液及其他水处理方面得到更加广泛的应用。  相似文献   

10.
陆至羚  柳建华  张良  张瑞  吴昊  祁良奎 《化工进展》2015,34(8):2961-2966
CO2作为一种天然制冷剂在微通道内应用具有很大的换热优势,然而由于微尺度效应及其物性,在低干度区容易发生干涸,严重影响换热效果。为研究微细通道内CO2流动沸腾换热与干涸特性,搭建了相应实验装置,对内径分别为1mm、2mm、3mm以及内表面粗糙度为16μm的不锈钢管,在CO2制冷剂热流密度2~34kW/m2、质量流率50~1350kg/(m2·s)、饱和温度-10~15℃下进行换热性能与干涸实验对比研究。结果表明:常规管径换热特性在微细通道内不再适用;热流密度的增加对于强化核态沸腾换热具有显著影响,高于临界热流密度(critical heat flux,CHF)则发生干涸;质量流率对于核态沸腾区换热系数的影响则较小;不同饱和温度时换热特性有所不同,高饱和温度下换热系数随其升高而提高,低饱和温度下则相反;干涸过程对总换热系数的影响占34%。研究结论为CO2微通道换热器的研究开发提供理论依据。  相似文献   

11.
One of the main disadvantages of batch membrane processes is the increase of the pollutant concentration in the feedstock throughout the operation. Operating the plant at constant process conditions leads in many cases to weaker performances and, moreover, to heavy fouling on the membranes. Critical flux-based methods are one of the most used approaches to overcome fouling problems. Within critical flux conditions, only reversible fouling can occur, which can be periodically soft-cleaned.This work studies the relationship between particle size distributions in the feed stream and critical flux values when different pretreatment processes are applied to an olive vegetation waste water stream. The considered pretreatment processes were: coagulation (with aluminum hydroxide and aluminum sulphate), aerobic biodigestion (by means of fungi) and photocatalytic organic matter reduction (by means of nanometric titanium dioxide anatase powders irradiated by UV light). The study was carried out at pilot plant scale (100 L batch capacity).These results were compared with performances and effects on the critical flux value for MF, UF and NF membranes. The different pretreatment on the same waste water stream shifts differently the particle size distribution mainly by organic matter degradation, and this influences heavily the critical flux value and thus the filtration outcome.Finally, the purification of the olive vegetation waste water stream can be performed with a MF, UF, NF and RO membrane system in series, being very careful in choosing the correct operating conditions to avoid the quick formation of an unsustainable fouling.  相似文献   

12.
Ismail Koyuncu 《Desalination》2003,155(3):265-275
This paper presents the results of the laboratory and pilot-scale membrane experiments of opium alkaloid processing industry effluents. Different types of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for membrane fouling, permeate flux and their suitability in separating COD, color and conductivity. Experiments demonstrated that membrane treatment is a very promising advanced treatment option for pollution control for opium alkaloid processing industry effluents. Almost complete color removal was achieved with NF and RO membranes. COD and conductivity removals were also greater than 95% and met the current local standards. Nevertheless, pretreatment was an important factor for the NF and RO membrane applications. Membrane fouling occurred with direct NF membrane applications without UF pretreatment. The total estimated cost of the UF and NF treatment system was calculated as $0.96/m3, excluding the concentrate disposal cost.  相似文献   

13.
Filtration performance and fouling of nanofiltration (NF) and reverse osmosis (RO) membranes in the treatment of dairy industry wastewater were investigated. Two series of experiments were performed. The first one involved a NF membrane (TFC-S) for treating the chemical-biological treatment plant effluents. The second one used a RO membrane (TFC-HR) for treating the original effluents from the dairy industry. The permeate flux was higher at higher transmembrane pressures and higher feed flowrates. The curves of permeate flux exhibited a slower increase while the feed flowrate decreased and the pressure increased. Membrane fouling resulted in permeate flux decline with increasing the feed COD concentration. Furthermore, the flux decline due to the COD increase was found higher at higher pressures for both NF and RO membranes.  相似文献   

14.
In the face of human society’s great requirements for health industry, and the much stricter safety and quality standards in the biomedical industry, the demand for advanced membrane separation technologies continues to rapidly grow in the world. Nanofiltration(NF) and reverse osmosis(RO) as the highefficient, low energy consumption, and environmental friendly membrane separation techniques, show great promise in the application of biomedical separation field. The chemical compositions, microstr...  相似文献   

15.
《Desalination》2007,202(1-3):333-342
Laboratory experiments and model calculations were performed to elucidate the fundamental interactions that control organic fouling in reverse osmosis (RO) processes. Bovine serum albumin and alginic acid were selected as model aquatic organic macromolecules (organic foulants). An extended Derjaguin-Landau-Verwey-Overbeek (DLVO) characterization analysis was used to elucidate mechanisms of organic matter fouling on a commercial, polyamide composite RO membrane. Surface tension parameters derived from contact angle analyses are used to demonstrate that the apparent thermodynamic stability of macromolecules determines and adhesive free energy between membranes and macromolecules explained the observed differences in flux decline. Further, foulant–membrane and foulant–foulant interfacial forces helped explain why hydrophilic macromolecules formed polarization layers causing minimal flux decline, while hydrophobic macromolecules formed gel (or cake) layers that led to severe flux decline.  相似文献   

16.
The occurrence of flux decline in brackish water reverse osmosis (RO) plants due to dissolved organics is a topic of ongoing research. This type of organic fouling has also been found in seawater RO plants. A study was undertaken to compare organic fouling in hollow fiber and spiral wound membranes using a seawater feed that possessed a high concentration of huraic acid. This study was undertaken at an RO plant on Grand Cayman Island, British West Indies. The feed water came from a sea well and possessed a concentration of humic acid that varied between 35 and 60 mg/l.The hollow fiber membrane was operated at a recovery of 25% while the recovery with the spiral wound membrane varied between 5 and 25%. The performance data which included permeate flow, salt rejection, pressure drops across the membrane and analysis of the membranes for organic fouling were undertaken. This study compared the performance data and organic fouling between the hollow fiber and spiral wound meembranes.  相似文献   

17.
海玉琰  何灿  马瑞  熊日华 《化工进展》2021,40(10):5720-5729
反渗透(RO)/纳滤(NF)膜元件在长期运行过程中会不可避免地发生膜污染,当产水水质无法满足应用指标时,就需要对膜元件进行更换。膜剖检分析是研究和确定膜污染最直观有效的方法,通过膜剖检分析及膜污染诊断可以为膜元件的日常维护、膜系统运行优化和膜性能修复提供有效依据。但是,目前对于膜剖检分析的实践及膜污染诊断研究还不系统、不全面。本文针对RO/NF膜剖检分析及膜污染诊断相关研究,介绍了膜元件剖检分析流程和各类膜污染分析方法,分析了实际应用中存在的问题,并根据膜剖检分析的意义和价值,重点综述了膜污染成分诊断、膜污染分布情况诊断、不同应用场景膜污染情况对比和不同膜材料的污染情况对比研究进展,以期为膜污染机制研究、膜污染预防控制和膜系统运行改善提供参考。  相似文献   

18.
For the applications of reverse osmosis (RO) process, membrane fouling caused by organic molecule adsorption is still a serious problem which significantly decreases membrane lifespan and increases operation costs. In this present article, we report the thin film composite (TFC) RO membrane functionalized with tris(hydroxymethyl)aminomethane (THAM) using one‐step method for improved antifouling property. The results of surface characterization indicated that THAM was successfully grafted onto the active layer of membrane by covalent linkage. Mult‐hydroxyl‐layer was generated and remained steadily on TFC membrane surface after modification. The contact angle decreased from 75.9 ± 3.0° to 46.9 ± 2.3°, which showed a distinct improvement of membrane surface hydrophilicity after modification. The grafted THAM improved water flux by 28.3%, while salt rejection was almost unchanged in membrane property tests. The modified membranes presented preferable antifouling property to foulants of bovine serum albumin, sodium alginate, and dodecyl trimethyl ammonium bromide than that of pristine membranes during dynamic fouling experiments. The method in this study provided an effective way to improve antifouling property of the polyamide thin‐film‐composite RO membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45891.  相似文献   

19.
Seasonal fouling on seawater desalination RO membrane   总被引:1,自引:0,他引:1  
A pilot study has been performed to investigate the seasonal characteristic of seawater reverse osmosis (RO) membrane fouling. Two batches of experiment during summer and winter were both performed 18 days to provide a clear picture on microbial population variability. The feed water of the pilot from seawater desalination plant has significant difference in temperature and silica content between the two seasons.In our experiments, scaling and biofouling are more serious in summer. And the permeate flux decline is closely related to the rise in microbial population, and it was dominated by cell multiplication rather than adhesion. In addition, the summer cell multiplication is much more abundant. Moreover, the extracellular polymeric substance (EPS) feature intensity detected by Fourier-transform infrared spectroscopy was also stronger in summer. The abundant EPS was one of the major reasons to cause the inorganic matter adsorption. Si, Al, Fe, Ca and Mg were found as the major inorganic foulants deposited on the Ro membranes. Silica and calcium in summer appeared obvious higher amounts than that in winter, which indicated that they should be affected by microbial action directly or indirectly more than other elements.In summary, there exists a seasonal effect on membrane scaling and fouling, and scaling is associated with biofouling in some degree. Further researches could be focus on actual association between microbial action and inorganic fouling.  相似文献   

20.
The influence of colloidal fouling and feed water recovery (or concentration factor, CF) on salt rejection of thin-film composite reverse osmosis (RO) and nanofiltration (NF) membranes was investigated. Fouling experiments were carried out using a laboratory-scale crossflow test unit with continuous permeate disposal to simulate the CF and recovery as commonly observed in full-scale RO/NF systems. For feed waters containing only salt (NaCl), permeate flux declined linearly as CF was increased and salt rejection was nearly constant for both RO and NF membranes. On the other hand, a sharp decrease in permeate flux and significant decline in salt rejection with increasing CF were observed under conditions where colloidal fouling takes place. For both RO and NF membranes, the marked permeate flux decline was attributed to the so-called “cake-enhanced osmotic pressure”. The decline in salt rejection when colloidal fouling predominated was much more substantial for NF than for RO membranes. In all cases, the decline in salt rejection was higher under conditions of more severe colloidal fouling, namely at higher ionic strength and initial permeate flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号