首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The technology of obtaining active carbon from anthracite mined in Siberia is described. The effect of the activating agent, anthracite/activator ratio and activation temperature has been tested. The activation either with KOH or NaOH has been found to lead to microporous active carbon samples of well-developed surface area reaching from 588 to 2260 m2/g and pore volume from 0.29 to 1.12 m3/g. The structural properties of the active carbons obtained have been found to depend first of all on the anthracite/activating agent ratio, on the kind of activating agent and finally on the temperature of activation.  相似文献   

2.
R. Pietrzak  K. Jurewicz  K. Babe? 《Fuel》2010,89(11):3457-3467
The paper presents the results of a study on obtaining N-enriched active carbons from bituminous coal and on testing its use as an electrode material in supercapacitors. The coal was carbonised, activated with KOH and ammoxidised by a mixture of ammonia and air at the ratio 1:3 at 300 °C or 350 °C, at different stages of the production, that is, at those of precursor, carbonisate, and active carbon. The products were microporous N-enriched active carbon samples of well-developed surface area reaching from 1577 to 2510 m2/g and containing 1.0 to 8.5 wt% of nitrogen. The XPS measurements have shown that in the active carbons enriched in nitrogen at the stage of precursor and at the stage of carbonisate, the dominant nitrogen species are the N-5 groups, while in the samples ammoxidised at the last stage of the treatment the dominant nitrogen species are the surface groups of imines and/or nitriles, probably accompanied by amines and amides. The paper reports the results of a comprehensive study of the effect of the structure and chemical composition of a series of active carbon samples of different properties on their capacity performance in water solutions of H2SO4 or KOH, with the behaviour of positive and negative electrodes analysed separately.  相似文献   

3.
Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g−1) even at a scan rate of 1000 mV s−1. Thus, a simple and efficient strategy to USACs has been presented.  相似文献   

4.
《Ceramics International》2017,43(2):2333-2337
Recently, Na3V2(PO4)3 has shown great promise as cathode material for sodium-ion batteries. In this study, a series of carbon-modified Na3V2(PO4)3 (NVP/C) composites have been synthesized using anthracite as the carbon source. The NVP/C composite shows a nanosheet shape with a 3D continuously conductive network composed of carbon layer and carbon bump. The effect of anthracite dosage on the electrochemical performance of NVP/C has also been investigated. The results show that the NVP/C composite prepared with 10 wt% anthracite (NVP/C-10) exhibits the highest rate capability and a great cycle stability. Especially the NVP/C-10 electrode behaves an average capacity as high as 97 mAh g−1 at a high current rate of 10 C. Moreover, NVP/C-10 still delivers a high specific capacity of 97.5 mAh g−1 even after 800 cycles at 5 C, showing a very low capacity fading ratio of 0.012% per cycle. The excellent rate capability and cycle stability of NVP/C-10 can be ascribed to the synergistic effects of the nanosheet structure and the 3D continuously conductive network. Our results demonstrate that anthracite can be a promising carbon source for the preparation of NVP/C and other polyanion cathode materials as well.  相似文献   

5.
The effect of carbon surface area on capacity is investigated in cathodes for lithium sulfur batteries. Carbon additives help overcome the low electrical conductivity of sulfur. Cathodes were prepared at 30 wt% sulfur on different activated carbons having unloaded BET surface areas of 1200–3200 m2/g. Sulfur utilization ranged from 33% to 83% of the theoretical capacity (1672 mAh/g) with a strong correlation to the accessible pore volumes having pore widths between 1 and 5 nm. Additionally, cathodes prepared at 12.5–68 wt% on an activated carbon having unloaded BET surface area of 3200 m2/g showed excessive sulfur loading provided little additional capacity.  相似文献   

6.
This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 °C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains.  相似文献   

7.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

8.
BaCe0.95Tb0.05O3?α (BCTb) perovskite hollow fibre membranes were fabricated by spinning the slurry mixture containing 66.67 wt% BCTb powder, 6.67 wt% polyethersulphone (PESf) and 26.67 wt% N-methyl-2-pyrrolidone (NMP) followed by sintering at elevated temperatures. The influence of sintering temperature on the membrane properties was investigated in terms of crystal phase, morphology, porosity and mechanical strength. In order to obtain gas-tight hollow fibres with sufficient mechanical strength, the sintering temperature should be controlled between 1350 and 1450 °C. Hydrogen permeation through the BCTb hollow fibre membranes was carried out between 700 and 1000 °C using 50% H2–He mixture as feed on the shell side and N2 as sweep gas in the fibre lumen. The measured hydrogen permeation flux through the BCTb hollow fibre membranes reached up to 0.422 μmol cm?2 s?1 at 1000 °C when the flow rates of the H2–He feed and the nitrogen sweep were 40 mL min?1 and 30 mL min?1, respectively.  相似文献   

9.
《Fuel》2003,82(15-17):1917-1920
A UK bituminous coal with particle size <62 μm and containing 5.0 wt% ash and 2.4 wt% S was treated with a two-stage leaching sequence of aqueous HF followed by aqueous HNO3. The ash and S contents reduced to 0.2 wt% and 1.3 wt%, respectively. In addition, the calorific value (CV) dropped from 31.5 to 29.5 MJ/kg, and the N content increased from 2.0 to 2.8 wt%, due to attack on the carbonaceous matrix during the HNO3 leach. Interestingly, this attack only occurs when HNO3 reacts with and dissolves pyrite, suggesting that it is the products of reaction between HNO3 and pyrite which react with the coal. It is proposed here that localised concentrations of sulphuric and nitric acids at the pyrite site may react to form the powerful nitrating agent NO2+ which then reacts with the carbonaceous coal matrix. The fluoride content of the coal increases from 80 to 3240 ppm after the HF leach, yet drops to 130 ppm following the HNO3 leach. The mineral matter remaining in the coal after the leaching sequence consists largely of Fe, which is most likely present as finely disseminated unreacted pyrite.  相似文献   

10.
Ordered mesoporous carbon (OMC) was synthesized by nano-casting method using novel fluidic precursor – acrylonitrile telomer (ANT). By the penetration of mesoporous silica template with pure ANT, followed by the stabilization, carbonization and removal of the template, we obtained highly ordered mesoporous carbon rods (specific area 408 m2 g−1). When an acetone solution of ANT (66 and 33 wt.%) was used instead of pure ANT, carbon materials with mesopore ranging from 2 to 7 nm were obtained (specific area 843 and 1012 m2 g−1 respectively). Both nitrogen and sulfur atoms were doped into mesoporous carbon with 4 and 0.6 at.% using nitrogen containing monomer and sulfur containing chain transfer agent, without involving complicated synthetic technique and poisonous gaseous compounds. This method was proved to be a facile way to synthesize nitrogen and sulfur containing OMC with partially controllable pore distribution and morphology. More importantly, due to unique mesopore structure and heteroatom doping, Pt nano-particles deposited on the OMCs showed electrocatalytic activity as high as 508 mA mg−1 Pt in methanol oxidation which is 1.7-fold of activity of Pt deposited on commercial Vulcan carbon black.  相似文献   

11.
Nitrogen-doped ordered mesoporous carbons (N-doped OMCs) with a high surface area of 1741 m2/g and nitrogen content up to 15 wt.% have been synthesized by nanocasting approach by using SBA-15 as a hard template, phenolic resin (resol) as a carbon source and high nitrogen-containing cyanamide as the nitrogen dopant. The introduction of cyanamide not only incorporates high-content nitrogen into the carbon matrix in the primary forms of pyridinic and quaternary species, but also greatly increases the surface area of materials. The obtained N-doped OMCs have large surface area with mesoporosity up to 92%, uniform and appropriate pore size (3.6–4.1 nm), large pore volume (1.2–1.81 cm3/g). These merits together with high nitrogen enrichment lead to a specific capacitance (230 F/g at 0.5 A/g) and good rate capability (175 F/g at 20 A/g with capacitance retention of 77.4%) in 6 M KOH aqueous electrolytes.  相似文献   

12.
Activated carbons were prepared from sodium lignosulfonate by phosphoric acid activation at carbonization temperatures of 400–1000 °C. The resulting materials were characterized with regard to their surface area, pore volume, pore size distribution, distribution of surface groups and ability to adsorb copper ions. Activated carbons were characterized by nitrogen adsorption, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analyses. The results indicate that with increasing carbonization temperature, the surface area decreased from 770 m2/g at 400 °C to 180 m2/g at 700 °C and increased at higher temperatures to 1370 m2/g at 1000 °C. The phosphorus content peaked at 11% for carbon obtained by carbonization at 800 °C. Potentiometric titration revealed the acidic character of all the phosphoric acid-activated carbons, which were found to have total concentrations of surface groups of up to 3.3 mmol/g. The carbons showed a high adsorption capacity for copper ions even at pH values as low as 2.  相似文献   

13.
Macromolecular oxidant [P]-SO2NBrNa (a macroporous styrene/divinylbenzene copolymer containing N-bromosulfonamide functional groups in the sodium form) was synthesized and used to oxidize arsenites to arsenates in dilute aqueous solutions. The oxidant, containing active bromine (1.65 mmol/g) in its functional groups, was obtained through the transformation of Amberlyst 15 (Rohm and Haas) commercial cation exchanger’s sulfonic functional groups. The batchwise method and the column method and NaAsO2 solutions (375, 93 and 10 mg As(III)/dm3) in water alone and in 0.01 M NaOH were used in the investigations. Special potentiometric, reductometric measurements showed that the investigated oxidation reaction was favoured by a weak acidic to weak alkaline medium. The determined redox potential of the resin was 440 mV at pH = 6.3 and 130 mV at pH = 11.01. In the column process experiments, conducted using NaAsO2 solutions with a concentration of 10 mg As(III)/dm3 at a flow rate of 6 BV/h, a breakthrough (defined as the exceedance of 0.01 mg As(III)/dm3 in the effluent) would occur after the solutions amounting to about 1700 bed volumes were passed though the column.  相似文献   

14.
Mesoporous carbons (MCs) for supercapacitors were prepared from coal tar pitch by a microwave-assisted one-step process coupling the potassium hydroxide (KOH) activation and magnesium oxide (MgO) template. MCs were characterized by scanning electron microscope and X-ray diffraction. The results show that the specific surface area (SBET), micropore volume and specific capacitance of MCs made by microwave heating as well as the energy density of MC capacitors pass through a maximum with increasing mass of MgO and the relative mass ratio of KOH/pitch. The SBET of MCs varies from 1003 to 1394 m2/g. The SBET and total pore volume of MC and microporous carbon made by microwave heating are bigger than that made by conventional heating. Under optimum conditions with the masses of coal tar pitch, MgO, KOH at 9 g, 12 g, 6 g, and the microwave power at 600 W, MC (MC9-12-6) made at 30 min heating time shows a high specific capacitance of 224 F/g in 6 M KOH aqueous electrolyte after 1000 cycles. The results have shown that microwave-assisted rapid KOH activation coupled with the MgO template is an efficient one-step approach to the preparation of low cost yet high performance MCs for supercapacitors.  相似文献   

15.
Near-supercritical and supercritical CO2 was used to extract low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood. Extraction of samples containing sapwood and knotwood was carried out at 10⿿25 MPa and 30⿿50 °C to assess the influence of the operational conditions on the yields of total extracts and phenolics, as well as on the radical scavenging capacity of extracts. The use of ethanol as a co-solvent increased both the extraction yields and the concentration of phenolics in extracts. Operating under selected conditions (25 MPa, 50 °C, 10% ethanol), the extraction yield accounted for 4.1 wt% of the oven-dry wood. The extracts contained up to 7.6 g of phenolic compounds (measured as gallic acid equivalents) per 100 g extract, and showed one third of the radical scavenging capacity of Trolox. Native resin acids accounted for about 24 g per 100 g extracts, whereas flavonoids, lignans, stilbenes and juvabiones were found at lower proportions.  相似文献   

16.
Graphene-incorporated nitrogen-rich carbon composite with nitrogen content of ca. 10 wt.% has been synthesized by an effective yet simple hydrothermal reaction of glucosamine in the presence of graphene oxide (GO). The nitrogen content of carbon composite is nearly twice as high as that of hydrothermal carbon without graphene. GO is favorable for the high nitrogen doping in the carbon composite by the reaction between the glucosamine-released ammonia and GO. The hydrothermal carbon composite is further activated by KOH, and graphene in the activated carbon composite demonstrates a positive effect of increasing specific surface area, pore volume and electrical conductivity, resulting in superior electrochemical performance. The activated carbon composite with higher specific surface area and micropore volume possesses higher specific capacitance with a value of 300 F g−1 at 0.1 A g−1 in 6 M KOH aqueous solution in the two electrode cell. Larger mesopore volume and higher conductivity of the activated carbon composite will provide fast ion and electron transfer, thus leading to higher rate capacity with a capacitance retention of 76% at 8 A g−1 in comparison to the activated hydrothermal carbon without graphene.  相似文献   

17.
《Ceramics International》2016,42(4):4797-4805
In this study, the supercapacitive performances of manganese oxide films were investigated by adding different carbon nanomaterials, including carbon nanocapsules (CNC), multiwalled carbon nanotubes (MWCNTs) and multi-layered graphene. The manganese oxide films were prepared with manganese acetate precursor by sol–gel method, and the post-treatment effects were also examined. With a heat-treatment above 300 °C, the as-prepared amorphous films transformed to a compound of Mn3O4 and Mn2O3 phases, and the smooth surface became rough as well. Cyclic voltammogram (CV) tests showed that the manganese oxide film, which was mixed with 0.05 wt% MWCNTs and annealed at 350 °C for 1 h, exhibited the optimized specific capacitance, 339.1 F/g. During 1000CV cycles, the specific capacitances of original manganese oxide film decreased gradually from 198.7 to 149.1 (75%) F/g. After same number of cycle tests, the modified films containing 0.025 wt% CNC, 0.05 wt% MWCNTs and 0.1 wt% graphene retained 201.8 (64.2%), 267.4 (78.9%) and 193.1 (57.4%) F/g respectively. The results indicates that the supercapacitive performance of manganese oxide films were significantly modified by carbon nanomaterials; in addition, the MWCNTs additive could also reduce the decay rate.  相似文献   

18.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

19.
《Ceramics International》2017,43(4):3919-3922
Mullite-based ceramics have been synthesized by reactive sintering of a mixture containing kaolin and a mica-rich kaolin waste. Samples fired in the temperature range from 1300 to 1500 °C were characterized by X-ray diffraction (XRD). The quantitative phase analysis and unit cell parameters of the mullite were determined by Rietveld refinement analysis of the XRD data. Mullite-based ceramics with 1.2 wt% quartz, 56.3 wt% glass (amorphous phase), 2.64 g/cm3 of apparent density, and 35±1.2 MPa of flexural strength were obtained after firing at 1500 °C. A liquid phase sintering mechanism activated by a total mica content of 13.3 wt% allowed to increase the mullite content to 47.6 wt% (2.3 wt% quartz and 50.1 wt% glass phase) and improve the flexural strength (70±3.9 MPa) after firing at 1400 °C.  相似文献   

20.
A series of ordered mesoporous carbon–TiO2 (OMCT) materials with various weight percentages of TiO2 (50–75 wt%) were synthesized by evaporation-induced self-assembly and in-situ crystallization at various calcination temperatures (600–1200 °C) to evaluate the Li-ion storage performance. The OMCT has ordered 2D hexagonal mesoporous structures and the TiO2 nanocrystals with different phases are embedded into the frameworks of carbonaceous matrix. The reversible capacity of OMCT is highly dependent on the phase and content of TiO2, and the anatase TiO2 is a superior crystalline phase to rutile and TiN for Li-ion insertion. The OMCT65 which contains 35 wt% carbon and 65 wt% TiO2 shows a high capacity of 500 mAh g?1 at 0.1C after 80 cycles. In addition, OMCT65 exhibits a good cyclability and rate capability. The reversible capacity remains at 98 mAh g?1 at a high rate of 5C, and then recoveries to 520 mAh g?1 at 0.1C after 105 cycles. The excellent reversible capacity and rate capability of OMCT65 are attributed to the embedment of well-dispersed anatase TiO2 nanocrystals into the specific porous structure of OMCT, which can not only facilitate the fast Li-ion charge transport but can also strengthen the carbon–TiO2 co-constructing channels for lithiated reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号