首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molybdenum disulfide (MoS2) is well known for exceptional friction and wear properties in inert and high vacuum environments. However, these tribological properties degrade in humid and high temperature environments for reasons that are not fully understood. A prevailing hypothesis suggests that moisture and thermal energy facilitate oxidation, which increases the shear strength of the sliding interface. The purpose of this study is to elucidate the contributions of water, oxygen, and temperature to the tribological degradation of MoS2. Generally speaking, we found a minimum friction coefficient that occurred at a temperature we defined as the transition temperature. This transition temperature ranged from 100 to 250 °C and was a strong function of the MoS2 preparation and thermal sliding history. Below the transition temperature, friction increased with increased water, but was insensitive to oxygen. Above the transition, friction increased with increased oxygen, but decreased to a limited extent with increased water. These results are generally consistent with prior results, but clarify some inconsistencies in the literature discussions. Contrary to the prevailing hypothesis, the results suggest that water does not promote oxidation near room temperature, but directly interferes with lamellar shear through physical bonding. Increased temperatures drive off water and thereby reduce friction up to the transition temperature. The results suggest that oxidation causes increased friction with increased temperature above the transition temperature. The data also suggest that water helps mitigate high temperature oxidation by displacing the environmental oxygen or by preferentially adsorbing to the surface.  相似文献   

2.
Macro- and microtribological properties of the MoS2 film exposed to atomic oxygen, ultraviolet rays and radiation both in low earth orbit (LEO) and in ground-based facility were evaluated relevance to micro/nano satellites. MoS2 samples are exposed to LEO space environment by the space environment exposure device experiment on international space station. Laser-detonation atomic oxygen beam source was used for atomic oxygen simulation on the ground. X-ray photoelectron spectroscopy and energy dispersive spectroscopy measurements suggested that electron beam and ultraviolet exposure did not affect chemical structure of MoS2 surfaces. However, atomic oxygen-exposed and flight samples showed surface oxidation. It was found that the macroscopic friction coefficient of the flight sample was similar to that of the control sample. In contrast, remarkable increase in friction coefficient in microscopic properties was observed.  相似文献   

3.
Molybdenum disulfide (MoS2) has been widely used in vacuum environment as an excellent solid lubricant. However, the application of MoS2 is greatly limited in terrestrial atmosphere due to the sensitivity to humidity. Although the sensitivity of MoS2 to water vapor has been widely recognized, the mechanism is not clear. To explore the tribological mechanism of MoS2 in the presence of water vapor, a series of experiments were performed to investigate the effect of N2 (inert gas), O2 (active gas), air (a combination of both) and cyclic humidity change in air on the frictional response of MoS2 to humidity. According to the results, a model that described water adsorption enhanced by active sites in MoS2 and formed oxides, and an adsorption action change in water molecules with humidity was proposed. The model was applied to explain the recovery and instantaneous response of friction coefficient to humidity change.  相似文献   

4.
Low-load slow-speed sliding friction tests were conducted on a MoS2/graphite (90/10) bonded solid film lubricant in controlled-humidity environments. The average steady-state coefficient of friction increased from 0.23 to 0.28 as relative humidity (RH) was raised from 10 percent to 50 percent, and it increased to 0.6 when RH reached 90 percent.

At RH ≥80 percent, friction response was strongly influenced by chemically reactive metals used for slider and lubricant substrate. Thus, friction with carbon steel sliders was significantly lower than with stainless steel sliders, although corrosion of the former caused rapid destruction of the lubricant film. Also, continued sliding by stainless steel on lubricant applied to phosphor-bronze eventually resulted in a significant friction decrease and simultaneous formation of a dark red-brown film in the wear track. The proposed explanation for these effects is based on oxidation of MoS2 at the sliding interface and reaction of the oxidation products with slider and substrate metals.  相似文献   

5.
The influence, of environments on the properties of the surface films formed, with molybdenum dithiocarbamate (MoDTC) was examined under a reciprocating sliding condition. MoS2 was formed on the rubbing surfaces in air and oxygen, and molybdenum compounds with an oxidation state lower than MoS2 were produced in nitrogen and argon. The surface film composed of MoS2 was effective in reducing the friction and wear, while the molybdenum compound formed in nitrogen or argon had no ability to prevent direct contact between the rubbing surfaces and to reduce the friction. It was a necessary condition for forming the surface film composed of MoS2 that the environment to be rubbed contained oxygen at a concentration above a certain level.  相似文献   

6.
The atomic-scale friction in MoS2 is investigated employing the density functional theory calculation including the dispersion correction (DFT-D). Energy corrugations and lateral frictional forces of the lamellar MoS2 are derived, suggesting that the in-plane compressive MoS2 exhibits lower friction than the tensile system. The reduced friction is attributed to a stronger coulombic repulsive interaction enabled by the transferred charge to the sliding interface. In-depth understanding of the relationship between friction and interfacial interaction shows that friction can be tuned in layered MoS2 by applying an in-plane strain to the sliding interface.  相似文献   

7.
MoS2 is an excellent solid lubricant widely used for reducing friction. However, moisture is very harmful to its solid lubrication property because MoS2 is easily oxidized to form Mo6+ and S6+ in a humid atmosphere. In order to improve its oxidation resistance, a study on the role of a rare earth element Ce in the resistance of a Ni-Cu-P/Mo2 brush plating layer to the humid atmosphere was carried out. It was found that cerium can effectively stabilize the solid lubrication property of MoS2 due to its preferential adsorption on the surface of MoS2 particles, the adsorbed layer serving as a barrier to oxidation. This study shows that the rare earth element Ce can be deposited from a water plating solution.  相似文献   

8.
MoS2 coatings exhibit low coefficient of friction (COF) when sliding against aluminum; however, the magnitudes of their COF show high sensitivity to environmental conditions. Ti could reduce the sensitivity of the frictional behavior of MoS2 coatings to moisture. This study examines the tribological properties of Ti containing MoS2 coating (Ti–MoS2) tested against an aluminum alloy (Al-6.5% Si) in ambient air (58% relative humidity, RH), dry oxygen, dry air and dry N2 (< 4% RH) atmospheres. The Ti–MoS2 coating exhibited similar COF values under an ambient (0.14), dry oxygen (0.15) and dry air (0.16) atmospheres. It was found that oxidation of MoS2 to MoO3 was responsible for high COF under these testing conditions as revealed by Energy-dispersive X-ray Spectroscopy (EDS) and micro-Raman spectroscopy. However, a low and stable COF of 0.07 was observed under a dry N2 condition. This work further showed that the tests performed at elevated temperatures, up to 400 °C in a dry N2 atmosphere sustained the low and stable COF of the Ti–MoS2 coatings. The sliding tests performed under a dry N2 atmosphere prevented the formation of MoO3 and as a result, the Ti–MoS2 coatings maintained low COF values. Low COF values were also attributed to the formation of MoS2 transfer layers.  相似文献   

9.
Gabi Nehme 《摩擦学汇刊》2013,56(6):977-985
There is recent concern regarding grease behavior in extreme pressure applications. The research described here is aimed at providing good friction and wear performance while optimizing rotational speeds under extreme loading conditions. A design of experiment (DOE) was used to analyze molybdenum disulfide (MoS2) greases and their importance in reducing wear under extreme loading and various speeds conditions (schedule 1 and schedule 2 speeds). The lamellar structure of MoS2 provides very good weld protection by forming a layer that can be easily sheared under the applications of extreme pressures. An extreme load of 785 N was used in conjunction with different schedules of various rotational speeds to examine lithium-based grease with and without MoS2 for an equal number of revolutions. A four-ball wear tester was utilized to run a large number of experiments randomly selected by the DOE software. The grease was heated to 75°C and the wear scar diameters were collected at the end of each test.

The results indicated that wear was largely dependent on the speed condition under extreme pressure loading, and thus a lower MoS2 concentration is needed to improve the wear resistance of lithium-based greases. The response surface diagram showed that the developed molybdenum disulfide greases exhibited both extreme pressure as well as good wear properties under various rotational speeds when compared to steady-state speed. It is believed that MoS2 greases under schedule 1 speeds perform better and provide an antiwear film that can resist extreme pressure loadings.  相似文献   

10.
Significant advancements in the production of low friction, long wear life, sputter-deposited MoS2 lubricant coatings have been made in the last decade. The introduction of multi-layered coatings, the establishment of careful controls on doping during DC and magnetron sputter deposition, and the implementation of ion assisted deposition have resulted in lubricants with substantially longer wear lives (up to a factor of ten greater than in the early 1980s) and lower sliding friction coefficients. A major research effort, designed to improve the performance of solid lubricants, involved a number of laboratories during this time period, resulting in these major breakthroughs. However, even with this concentrated effort, the typical investigation involved making an educated guess, based on previous experience, of the deposition conditions, target compositions, or post treatments that might be expected to provide improved performance of resulting coatings. One notable discovery during this time period was that typical MoS2 films contain large quantities (up to 20 atom %) of oxygen substituted for sulfur in individual crystal lattices. In this paper we will compare the effects of this oxygen substitution with the effects of oxidation which involves a change in the oxidation number of the central molybdenum atoms within the crystals. A discussion of the relationship(s) between chemistry and coating structure and tribological performance will be presented with emphasis on defect chemistry and multiple phase interactions. Speculations on the role of coating chemistry in determining coating performance in applications such as in ball bearings will be presented.  相似文献   

11.
The ultra-low friction coefficient (typically in the 10−2 range) of MoS2-based coatings is generally associated with the friction-induced orientation of ‘easy-shear’ planes of the lamellar structure parallel to the sliding direction, particularly in the absence of environmental reactive gases and with moderate normal loads. We used and AES/XPS ultra-high vacuum tribometer coupled to a preparation chamber, thus allowing the deposition of oxygen-free MoS2 PVD coatings and the performance of friction tests in various controlled atmospheres. Friction of oxygen-free stoichiometric MoS2 coatings deposited on AISI 52100 steel was studied in ultra-high vacuum (UHV: 5 × 10−8 Pa), high vacuum (HV: 10−3 Pa), dry nitrogen (105 Pa) and ambient air (105 Pa). ‘Super-low’ friction coefficients below 0.004 were recorded in UHV and dry nitrogen, corresponding to a calculated interfacial shear strength in the range of 1 MPa, about ten times lower than for standard coatings. Low friction coefficients of about 0.013–0.015 were recorded in HV, with interfacial shear strength in the range of 5 MPa. Friction in ambient air leads to higher friction coefficients in the range of 0.2. Surface analysis performed inside the wear scars by Auger electron spectroscopy shows no trace of contaminant, except after friction in ambient air where oxygen and carbon contaminants are observed. In the light of already published results, the ‘super-low’ friction behaviour (10−3 range) can be attributed to superlubricity, obtained for a particular combination of cystallographic orientation and the absence of contaminants, leading to a considerable decrease in the interfacial shear strength.  相似文献   

12.
The tribology of molybdenum disulfide (MoS2)–Sb2O3–C films was tested under a variety of environmental conditions (ambient 50% RH, 10−7 Torr vacuum, 150 Torr oxygen, and 8 Torr water) and correlated with the composition of the surface composition expressed while sliding. High friction and low friction modes of behavior were detected. The lowest coefficient of friction, 0.06, was achieved under vacuum, while sliding in 8 Torr water and ambient conditions both yielded the highest value of 0.15. Water vapor was determined to be the environmental species responsible for high friction performance. XPS evaluations revealed a preferential expression of MoS2 at the surface of wear tracks produced under vacuum and an increase in Sb2O3 concentration in wear tracks produced in ambient air (50% RH). In addition, wear tracks produced by sliding in vacuum exhibited the lowest surface roughness as compared to those produced in other environments, consistent with the picture of low friction originating from well-ordered MoS2 layers produced through sliding in vacuum.  相似文献   

13.
The friction and wear behaviors of magnetron sputtered MoS2 films were investigated through the use of a pin and disk type tester. The experiments were performed for two kinds of specimens (ground (Ra 0.5μm) and polished (Ra 0.01 μm) substrates) under the following operating condifions: linear sliding velocities in the range of 22 -66 mm/s(3 types), normal loads varying from 9.8-29.4 N(3 types) and atmospheric conditions of air, medium and high vacuum(3 types). Silicon nitride pin was used as the lower specimen and magnetron sputtered MoS2 on bearing steel disk was used as the upper specimen. The results showed that low friction property of the MoS2 films could be identified in high vacuum and the specific wear rate in air was much higher than that in medium and high vacuum due to severe oxidation. It was found that the main wear mechanism in air was oxidation whereas in high vacuum accumulation of plastic flow and adhesion, were the main causes of wear.  相似文献   

14.
Prospective beneficial effects of mixtures of temperature-adaptive solid lubricants (ZnO–MoS2) on mechanical and tribological properties of M50 alloy steel were investigated at temperatures from 25 to 800 °C. ZnO and MoS2 were mixed with M50 (designated as M) to create composites MZ (M50 steel plus ZnO), MM (M50 steel plus MoS2), and MZM (M50 steel plus both additives). Sliding friction and wear experiments were performed at different temperatures using a pin-on-disk at a sliding speed of 0.2 m s?1 and a load of 12 N. Silicon nitride and M50 steel were used as the pin materials. In order to understand the friction and wear behavior of composites, analyses of their surfaces were done using XRD, EPMA, FESEM, EDS line/mapping, and XPS tests. A dynamic simulation model based on the finite element method was built to simulate the different stresses on the contact pairs. Results elucidated that MZM attained the least friction (0.17), compared to M (0.40), MZ (0.26), or MM (0.29) at 800 °C. The increase in surface roughness of MZM due to sliding was reduced by 37.3% compared to that of MZ (11.9%) or MM (22.7%). The good lubricating behaviors were referred to the synergetic effects of ZnO, MoS2, and formed lubricating components on worn surfaces.  相似文献   

15.
Abstract

The tribological properties of soybean oil (SO) with different molybdenum disulfide (MoS2) additives (hollow nanosphere, nanoplatelet and microplatelet) were investigated. MoS2 hollow nanospheres remarkably improved the tribological properties of SO. SO with MoS2 hollow nanospheres decreased abrasive plowing and changed the main wear pattern on the steel friction surfaces into chemical corrosion. The MoS2 hollow nanospheres easily entered the contact region than the other MoS2 particles to lubricate the friction pair because of its good dispersibility in SO. The tribochemical reactions among MoS2 hollow nanospheres, SO and friction material produced a lubricating film composed of MoO3, Fe2O3, carbon containing compounds. Thus, the MoS2 hollow nanospheres have potential lubricating applications with SO. By contrast, MoS2 nanoplatelet and microplatelets had lesser effects on the lubricating effect of SO. The MoS2 nanoplatelets, even with its smaller size and more active chemical properties, had more difficulty in entering into the contact region because of its low dispersibility in the base oil.  相似文献   

16.
The development of MoS2 coatings has involved the modification of substrate surfaces, the addition of metals or compounds to the MoS2, and variation in the deposition process parameters affecting the properties of deposited films. More recently, multilayer and periodic nanolayer coating structures have also been investigated. At present, work is concentrated on alloys of MoS2, mainly with various metals, and targeted at terrestrial (ambient air) applications. The addition of metals or compounds to physical‐vapour‐deposited MoS2 has led to improvements in coating performance, for example, greater stability of friction coefficient, greater film endurance, and increased temperature/oxidation resistance. The metal or compound can be either in the form of nanoscale multilayers or mixed with the MoS2, sometimes leading to nanoclusters within a MoS2 matrix. Microstructural analysis seems to show that the primary function of these additives is to suppress the formation of low‐density, columnar structures. At certain concentrations an added metal can also enhance the formation of the tribologically favourable (002) orientation of the MoS2 crystallites. Other changes in the properties of MoS2—metal composites may be due to their oxidation resistance, as indicated by the stability of these films against storage in air and their increased endurance when in sliding contacts at elevated temperatures.  相似文献   

17.
The wear and sliding friction response of a hybrid copper metal matrix composite reinforced with 10 wt% of tin (Sn) and soft solid lubricant (1, 5, and 7 wt% of MoS2) fabricated by a powder metallurgy route was investigated. The influence of the percentages of reinforcement, load, sliding speed, and sliding distance on both the wear and friction coefficient were studied. The wear test with an experimental plan of six loads (5–30 N) and five sliding speeds (0.5–2.5 m/s) was conducted on a pin-on-disc machine to record loss in mass due to wear for two total sliding distances of 1,000 and 2,000 m. The results showed that the specific wear rate of the composites increased at room temperature with sliding distance and decreased with load. The wear resistance of the hybrid composite containing 7 wt% MoS2 was superior to that of the other composites. It was also observed that the specific wear rates of the composites decreased with the addition of MoS2. The 7 wt% MoS2 composites exhibited a very low coefficient of friction of 0.35. The hardness of the composite increased as the weight percentage of MoS2 increased. The wear and friction coefficient were mainly influenced by both the percentage of reinforcement and the load applied. Wear morphology was also studied using scanning electron microscopy and energy-dispersive X-ray analysis.  相似文献   

18.
The influence of lanthanum fluoride (LaF3) on the characteristics of phenolepoxy-bonded MoS2 dry films was investigated. The functional mechanism was specifically studied using several analytical means. The results showed that the wear life of dry films containing a certain amount of LaF3 was considerably increased over that of the films without LaF3. However, the effect of LaF3 on the friction coefficient of the dry films was shown to be negligible. It was found that the addition of LaF3 is effective in reducing the oxidation tendency of MoS2 in the films during the friction process. The reason for this is investigated by the authors.  相似文献   

19.
Synthesis and tribological evaluation of three tetraalkylammonium thiomolybdate (R4N)2MoS4 (R = methyl, propyl, or ammonia) aqueous-based lubricant additives on a ball-on-disk tribometer was carried out for a steel–aluminum contact. Tests were performed at the same conditions of load, entrainment speed, sliding distance, temperature, and concentration of MoS2 to compare the activity (lubrication effect) of the thiomolybdates prepared. A friction reduction is observed for the three salts compared to pure water; however, significant differences in friction coefficient are observed depending on the alkyl group. SEM/EDAX and Raman analysis of the wear tracks reveal the in-contact formation of a MoS2-lubricating film, rich in molybdenum and sulfur.  相似文献   

20.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号