共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural gas appears to be a fuel of great interest for SOFC systems. The principal component of natural gas is methane, which can be converted into hydrogen by direct or gradual internal reforming (DIR or GIR) within the SOFC anode. However, DIR requires a large amount of steam to produce hydrogen. If the injected mixture contains very small quantities of steam, GIR is then obtained. With GIR, the risk of carbon formation is even greater. This paper proposes a model and simulation, using the CFD-Ace software package, of the behaviour of a tubular SOFC using GIR and a comparison between utilization in DIR and GIR. A thermal study is included in the model and a detailed thermodynamic analysis is carried out to predict the carbon formation boundary for SOFCs fuelled by methane. Thermodynamic equilibrium calculations taking into account Boudouard and methane cracking reactions allowed us to investigate the occurrence of carbon formation. Simulations were used to calculate the distributions of partial pressures for all the gas species (CH4, H2, CO, CO2, H2O), current densities and potentials in both electronic and ionic phases within the anode part (i.e., gas channel and cermet anode). The simulations indicate that there is no decrease in electrochemical performance if GIR is used rather than DIR. A thermal study appears to confirm that the cooling effect due to the endothermic reforming reaction is eliminated in GIR, but the thermodynamic study indicates that carbon formation can be suspected for xH2O/xCH4 ratios lower than one. 相似文献
2.
Supported nickel catalysts with a core/shell structure of Ni/Al2O3 and Ni/MgO-Al2O3 synthesized under multi-bubble sonoluminescence (MBSL) conditions were tested for mixed steam and dry (CO2) reforming and autothermal reforming of methane. In the previous tests, the supported Ni catalysts made of 10% Ni loading on Al2O3 or MgO-Al2O3 had shown good performances in the steam reforming of methane (methane conversion of 97% at 750 °C), in the partial oxidation of methane (methane conversion of 96% at 800 °C) and in dry reforming of methane (methane conversion of 96% at 850 °C) and showed high thermal stability for the first 50-150 h. In this study, the supported Ni catalysts showed good performance in the mixed and autothermal reforming of methane with their excellent thermal stability for the first 50 h. In addition, very interestingly, there was no appreciable carbon deposition on the surface of the tested catalysts after the reforming reaction. 相似文献
3.
Juliana S. LisboaLuís E. Terra Paulo R.J. SilvaHenrique Saitovitch Fabio B. Passos 《Fuel Processing Technology》2011,92(10):2075-2082
Nickel catalysts supported on α-Al2O3, CeO2, ZrO2 and Ce-ZrO2 were investigated in the autothermal reforming of methane. Ce-ZrO2 supports formed a solid solution and presented better oxygen storage capacity per unit of mass of Ce when compared to CeO2. Diffuse reflectance UV-Vis spectroscopy spectra and temperature-programmed reduction profiles, showed the presence of Ni2+ in tetrahedral and octahedral geometries for catalysts supported on mixed oxides. Temperature-programmed surface reaction experiments showed that the catalytic activity for autothermal reforming is proportional to the amount of metallic sites on the surface. However, when operating under severe coking conditions, catalysts with a higher oxygen storage capacity were more stable in the autothermal reforming of methane. Time-differential angular correlation experiments provided an atomic view on how the mobility of oxygen on CeZrO2 is enhanced by the presence of Ni, which increases the stability of the catalyst. 相似文献
4.
P Aguiar 《Chemical engineering science》2004,59(1):87-97
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands matching the thermal requirements of the two reactions. The application studied here is the operation of a solid oxide fuel cell (SOFC) with both direct (DIR) and indirect (IIR) internal reforming of methane. Such internal reforming within a high-temperature fuel cell module can lead to an overall autothermal operation which simplifies the system design and increases efficiency. However, such coupling is not easy to achieve because of the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of heat available from the fuel cell reactions. Previous results have shown that the use of typical metal-based (e.g. Ni) IIR catalysts leads to full methane consumption but undesirable local cooling at the reformer entrance and the use of less active IIR catalysts (e.g. non-metals or diffusion limited nickel) leads to methane being carried-over into the SOFC anode (methane slippage). In order to evaluate performance in the latter case, a combined DIR and IIR SOFC steady-state model has been developed. Simulation results have shown that, lowering the IIR catalyst activity to prevent local cooling effects at the reformer entrance is not adequate, as the fast kinetics of the direct reforming reaction then lead to full methane conversion and steep temperature gradients in the first 10% of the fuel channel length. It is shown that the simultaneous reduction of the anode DIR reaction rate improves performance considerably. The system behaviour towards changes in current density, operating pressure, and flow configuration (counter-flow vs. co-flow) has been studied. Reduction of both DIR and IIR catalyst activity combined with a counter-flow operation leads to the best performance. System performance with an IIR oxide-based catalyst is also evaluated. 相似文献
5.
Amornchai Arpornwichanop Yaneeporn Patcharavorachot Suttichai Assabumrungrat 《Chemical engineering science》2010,65(1):581-589
This paper presents a performance analysis of a planar SOFC (solid oxide fuel cell) with proton-conducting electrolyte (SOFC-H+). The SOFC-H+ is fueled by methane and operated under direct internal reforming and isothermal conditions. A one-dimensional steady-state model coupled with a detailed electrochemical model is employed to investigate the distribution of gas composition within fuel and air channels and all the electrochemical-related variables. The current–voltage characteristics of SOFC-H+ are analyzed and the result shows that the operation of SOFC-H+ at 0.7 V gives a good compromise on power density and fuel utilization. However, high CO content at fuel channel is observed at this condition and this may hinder the SOFC-H+ performance by reducing catalyst activity. The effect of key cell operating parameters, i.e., steam to carbon ratio, temperature, pressure, and water content in oxidant, on the performance of SOFC-H+ and the content of CO is also presented in this study. 相似文献
6.
以经过预重整反应的混合气为原料的固体氧化物燃料电池(SOFC)内部,甲烷蒸气重整反应与电化学反应同时发生在阳极多孔介质中,二者受到不同的操作与设计参数的影响,对电池总体性能起着决定性作用。编制了三维数值模拟程序,对由多孔阳极层、气体流动管道、固体支撑平板构成的单个复合管道进行了研究。结果显示:重整反应主要发生在多孔材料靠近流动管道的薄层内,只有靠近管道入口处才能在较深处进行;电化学反应发生在多孔层与电解质的交界面处;重整反应生成的H2、CO扩散到多孔材料底部参加电化学反应;电化学反应生成的热量供重整反应使用。说明研究范围内,SOFC阳极复合通道具有较好的传热、传质性能,化学/电化学反应存在较好的耦合关系。 相似文献
7.
Sauri Gudlavalleti Tijmen Ros Dick Lieftink 《Applied catalysis. B, Environmental》2007,74(3-4):251-260
This paper describes a novel approach to life studies on catalysts used in non-isothermal reactors, using a single long-term experiment. Temperature dependence of catalyst aging is determined by comparing the activity reduction of portions of the catalyst from different sections of the reactor, subjected to different temperatures. Time dependence is determined by fitting the drift in catalyst temperatures to a time-dependent reaction rate via a thermodynamic reactor model. Experimentally, a monolithic autothermal reforming catalyst was subjected to thermally accelerated aging under reforming conditions in an adiabatic laboratory mini-flow reactor for 1000 h. Methane was used as the fuel. The axial temperature profile of the catalyst was monitored using thermocouples placed at various locations along the catalyst. A gradual change in temperature profile, with increasing temperatures due to decreasing steam-reforming activity, was observed. The aged monolith was cut up into short pieces centered on the thermocouple locations. The pieces, each aged at a different temperature due to its location, were tested individually for activity. The reduced activities were correlated with the aging temperature to obtain the temperature dependence of thermal sintering rates. A generalized power-law equation (GPLE) model for sintering was fit to the activity data. A plug flow reactor (PFR) model describing the reaction was built and the sintering kinetics were incorporated. The PFR model was used to predict changes in catalyst performance due to sintering under normal operating conditions. Thermal sintering deactivation for this catalyst was found to be within acceptable limits for commercial applications. 相似文献
8.
9.
The reaction of carbon dioxide catalytic reforming with methane is an attractive route because these greenhouse gases can be converted into variable feedstocks. However this reaction is a highly energy consuming and coke forming process. These problems were improved by the electrocatalytic reforming of CO2 with CH4 in a solid oxide fuel cell (SOFC) membrane reactor system, which generates high electrical power and synthesis gases. The single cell consists of catalyst electrode (NiO–MgO), counter electrode ((La,Sr)MnO3) and Y2O3 stabilized ZrO2 (YSZ) electrolyte. The reaction rates of CO2 and CH4, and the electrochemical properties were investigated by an on-line GC and impedance-analyzer under open- and closed-circuit conditions, respectively. It was found that reaction rates of CO2 and CH4 under the closed-circuit condition were more stable than those of the open-circuit. The results were interpreted that the stability of catalyst anode was maintained by the reaction of oxygen ion transferred from the cathode with the surface carbon formed in the internal CO2 reforming by CH4 in SOFC system. 相似文献
10.
Selection and performance comparison of jet fuel surrogates for autothermal reforming 总被引:3,自引:0,他引:3
Three fuel mixtures were investigated as possible surrogates for low-sulfur JP-8. The selected fuel mixtures were chosen based on a desire to match hydrocarbon chemical composition classes found in real jet fuels. The surrogate fuels selected consisted of single, binary and tertiary-component mixtures of n-dodecane, decalin and toluene in liquid volume ratios of 10:0:0, 9:1:0 and 7:1:2. The hydrocarbon components selected represented the largest chemical classes within JP-8 of normal paraffin, cyclo-paraffin and aromatic. The surrogate fuels and individual surrogate fuel components were reacted in an atmospheric pressure autothermal reformer with noble metal catalysts under conditions of steam-to-carbon ratio of 2.0, fuel equivalency energy flow of 3.3 kW thermal, space velocities of 21,000-28,000 h−1 and variable oxygen-to-carbon ratios of 0.8-1.2. For all fuels investigated fuel conversion of greater than 96% could be achieved. The single component n-dodecane proved to be the least reactive resulting in lower hydrogen yields, lower reforming efficiency and increased olefin products in the reformate. The binary mixture of n-dodecane and decalin resulted in a closer match with JP-8, but did not correlate well in terms of fuel conversion and hydrogen yield. Aliphatic mixtures also exhibited greater olefin production. The three-component mixture of n-dodecane/decalin/toluene provided the best correlation to JP-8 and appears to be a good three-component surrogate fuel, particularly over the operating range of oxygen to carbon ratio of 0.95-1.10. 相似文献
11.
Suttichai Assabumrungrat Varong Pavarajarn Navadol Laosiripojana 《Chemical engineering science》2004,59(24):6015-6020
In the present study, a detailed thermodynamic analysis is carried out to provide useful information for the operation of solid oxide fuel cells (SOFC) with direct internal reforming (DIR) fueled by ethanol. Equilibrium calculations are performed to find the ranges of inlet steam/ethanol (H2O/EtOH) ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1500 K. Two types of fuel cell electrolytes, i.e., oxygen-conducting, and hydrogen-conducting electrolytes, are considered. The key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum H2O/EtOH ratio for which the carbon formation is thermodynamically unfavored decreases with increasing temperature. The hydrogen-conducting electrolyte is found to be impractical for use, due to the tendency for carbon formation. With a higher extent of the electrochemical reaction of hydrogen, a higher value of the H2O/EtOH ratio is required for the hydrogen-conducting electrolyte, whereas a smaller value is required for the oxygen-conducting electrolyte. This difference is due mainly to the water formed by the electrochemical reaction at the electrodes. 相似文献
12.
Pannipha Dokamaingam Navadol Laosiripojana Apinan Soottitantawat Suttichai Assabumrungrat 《American Institute of Chemical Engineers》2010,56(6):1639-1650
Mathematical models of direct internal reforming solid oxide fuel cell (DIR‐SOFC) fueled by methane are developed using COMSOL® software. The benefits of inserting Ni‐catalyst rod in the middle of tubular‐SOFC are simulated and compared to conventional DIR‐SOFC. It reveals that DIR‐SOFC with inserted catalyst provides smoother temperature gradient along the system and gains higher power density and electrochemical efficiency with less carbon deposition. Sensitivity analyses are performed. By increasing inlet fuel flow rate, the temperature gradient and power density improve, but less electrical efficiency with higher carbon deposition is predicted. The feed with low inlet steam/carbon ratio enhances good system performances but also results in high potential for carbon formation; this gains great benefit of DIR‐SOFC with inserted catalyst because the rate of carbon deposition is remarkably low. Compared between counter‐ and co‐flow patterns, the latter provides smoother temperature distribution with higher efficiency; thus, it is the better option for practical applications. © 2009 American Institute of Chemical Engineers AIChE J, 2010 相似文献
13.
内重整(IR)和外重整(ER)是固体氧化物燃料电池(SOFC)以天然气(NG)为燃料时的两种工作方式,不同重整方式下的电池性能、效率也不尽相同。借助有限元分析软件COMSOL Multiphysics? 5.2,以天然气为燃料,建立了电池组成为Ni-YSZ//YSZ//LSCF-GDC的ER-SOFC和IR-SOFC两种三维单电池模型。模拟结果表明:相同条件下,IR-SOFC具有比ER-SOFC更高的功率密度、燃料利用率和能量利用率;阳极重整反应主要发生在靠近燃料入口的区域内;H2和CO含量在IR-SOFC中先升高后降低,在ER-SOFC中则一直降低;IR-SOFC的温度变化更剧烈,燃料入口处温度梯度最大;越靠近集流体的区域,电解质表面的离子电流密度越大;ER-SOFC阳极不会发生热力学上的积炭现象,对于IR-SOFC,CH4热分解反应是整个阳极发生积炭的主要原因,其在燃料入口处的积炭活性高达270。 相似文献
14.
建立一个天然气自热重整的固体氧化物燃料电池(SOFC)系统模型,利用Aspen Plus化工流程模拟软件链接基于Fortran语言编写的电堆模型,在质量守恒和能量守恒的基础上,分析不同参数对系统性能的影响。模拟结果表明:随着水碳比的增加,甲烷和一氧化碳的转化率增大,导致氢气和二氧化碳含量增加;氧碳比和系统效率在水碳比为1.5时达到最大。随着燃料利用率的增加,电流密度增大,导致空气过量系数增大,空气利用率降低;系统的总效率和净效率均随之增大。尾气温度随着水碳比和燃料利用率的增加均呈现下降趋势。系统的最大总效率和净效率分别为44.5%和39.2%。研究结果为进一步优化自热重整系统指明了方向。 相似文献
15.
Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane
Peter Ivanov 《Electrochimica acta》2007,52(12):3921-3928
Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC. 相似文献
16.
E. Vakouftsi C. Athanasiou F.A. Coutelieris 《Chemical Engineering Research and Design》2011,89(2):224-229
In the present work the basic transport processes occurring in a planar solid oxide fuel cell (SOFC) were simulated. The Navier-Stokes and energy equations, including convective and diffusive terms, were numerically solved by the commercial CFD-ACE+ program along with the mass and charge transport equations. To achieve this, a three-dimensional geometry for the planar fuel cell has been built. It was also assumed that the feedstream was a mixture of methane and steam in a ratio avoiding carbon formation. In accordance with the literature, the steam reforming reaction, the water-gas shift reaction as well as electrochemical reactions were introduced to the model. The spatial variation of the mixture's velocity, the temperature profiles and the species concentrations (mass fractions) were obtained. Furthermore, the effect of temperature on the produced current density was investigated and compared to the outcomes from isothermal imposed conditions. 相似文献
17.
Bertha Mosqueda Jamil Toyir Akim Kaddouri Patrick Glin 《Applied catalysis. B, Environmental》2009,88(3-4):361-367
The catalytic properties of gadolinium-doped ceria (CGO) in methane steam reforming were studied. Catalytic tests were carried out between 750 and 900 °C, for H2O/CH4 ratios varying between 0.1 and 1, pretreated in H2O/N2, N2 and H2/N2. Above 800 °C, slight deactivation with time on stream was observed except for the H2-pretreated sample. Surface area measurements, O2 adsorption at room temperature and O2-temperature programmed oxidation experiments were performed after catalytic testing. Changes in both surface area and redox properties of CGO were observed and related to catalytic deactivation. Hydrogen is thought to play a key role in catalytic activity and deactivation process. 相似文献
18.
Methane autothermal reforming has been studied using comprehensive, detailed microkinetic mechanisms, and a hierarchically reduced rate expression has been derived without apriori assumptions. The microkinetic mechanism is adapted from literature and has been validated with reported experimental results. Rate determining steps are elicited by reaction path analysis, partial equilibrium analysis and sensitivity analysis. Results show that methane activation occurs via dissociative adsorption to pyrolysis, while oxidation of the carbon occurs by O(s). Further, the mechanism is reduced through information obtained from the reaction path analysis, which is further substantiated by principal component analysis. A 33% reduction from the full microkinetic mechanism is obtained. One-step rate equation is further derived from the reduced microkinetic mechanism. The results show that this rate equation accurately predicts conversions as well as outlet mole fraction for a wide range of inlet compositions. 相似文献
19.
Kazuhisa Murata Masahiro Saito Megumu Inaba Isao Takahara 《Applied catalysis. B, Environmental》2007,70(1-4):509-514
The catalytic autothermal reforming (ATR) of liquid hydrocarbons to provide hydrogen for mobile or stationary fuel cells was carried out over a Ni/Sr/ZrO2 catalyst that is active for steam reforming (SR). The catalyst system was found to be active for the ATR reaction, although the hydrogen concentration obtained by ATR, under the conditions employed, was a little lower than that for SR. Addition of sulfur, introduced in the form of thiophene, reduced the catalytic stability of Ni/Sr/ZrO2, even at 1073 K. The catalyst lifetime decreased with increasing sulfur concentration between 0 and 100 ppm. Additives for improving the sulfur-tolerance of Ni/Sr/ZrO2 were examined, and additions of Re or La were found to be effective in improving the stability of the catalysts. The best catalyst was 5 wt.% Re–Sr/Ni/ZrO2. This catalyst was used in the ATR of liquid hydrocarbon fuels such as commercial premium gasoline, hydrotreated FCC gasoline, reagent mixtures, and methylcyclohexane. For premium gasoline, the activity remained unchanged during 30 h, but then diminished rapidly. With the other fuels, however, the catalyst showed a much improved performance, indicating that the presence of sulfur could be associated with catalyst stability. ATR coupled with the water–gas shift reaction led to a reduction in the CO concentration by up to 2800 ppm. The catalyst's activity remained constant even after cold-start runs with 853–423–853 K temperature cycles under H2O/O2/N2 conditions. Thus, the Re–Sr/Ni/ZrO2 catalyst is effective for ATR of liquid hydrocarbon fuels. Further work is currently under way to extend the catalyst life. 相似文献
20.
Kinetics of autothermal reforming (ATR) of tetradecane on Pt-Al2O3 catalyst over the temperature range 750-900 °C is investigated. Experimental results obtained from NETL (US-DOE) are used for model parameter estimation and validation. Two Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate models are developed and subjected to parameter estimation and model discrimination. LHHW model in which hydrocarbon is adsorbed on the catalyst surface as alkyl intermediate species by scission of C-H bond gave physically meaningful parameters. Parameters are estimated by using generalized reduced gradient method in spreadsheet and sequential quadratic programming in Matlab. The estimated parameters for the selected model are thermodynamically consistent. The developed kinetic model could capture the experimental behavior of the process and could predict the outlet composition within 25% error. 相似文献