首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a mathematical model is presented to describe the photocatalytic degradation of VOCs in a packed bed reactor. Here, the adsorption of VOCs on the wall of the reactor is taken into account and the diffusion of VOCs in the axial direction is neglected. First-order kinetics is used to describe the photocatalytic oxidation of VOCs. The analytical solution of the present model is obtained by traveling wave method. The solution shows that the reactor performance is totally dependent on the inlet concentration of VOCs when the time is large enough. The present model is validated through the experimental result of the photocatalytic oxidation of trichloroethylene in a packed bed and the predicted results accord well with the experimental data. The influence of flow rate and inlet concentration on the performance of the reactor is discussed in detail. High flow rate offers high reaction rate and low conversion efficiency. The different inlet conditions and different reaction patterns are also investigated. The model would be useful to estimate the rate constant and help to the design of the reactor.  相似文献   

2.
Modern building ventilation design must take into account the health, safety and comfort of the occupants, as well as energy consumption and the environment. The system needs to protect occupants against chemical contaminants from numerous internal sources—office equipment, furniture, building materials, appliances, as well as intentional release. A promising technology which has great potential in this respect is UV photocatalytic oxidation (UV-PCO). Designing a UV-PCO system for a building requires full understanding of its performance, which strongly depends on the UV intensity field, types and concentration levels of reactants, oxygen and moisture levels, temperature, reflectance of duct surfaces, system configuration, orientation, air stream characteristics like temperature, humidity, air velocity and mixing, just to mention a few.This paper reports the development of a mathematical model for predicting the performance of a honeycomb monolith PCO reactor used in building mechanical ventilation systems. The model is validated by comparing its prediction with experimental data and with the prediction made by an existing model. The influence of several kinetic parameters such as airflow rate, pollutant inlet concentration, light intensity, humidity and catalyst deactivation has been investigated. The developed model can be used as a practical tool to simulate and optimize a UV-PCO system for application in building mechanical ventilation system.  相似文献   

3.
First-principles, predictive engineering models provide a sound theoretical basis for quantifying the inherent light energy utilization capabilities and performance limitations of candidate commercial photocatalytic oxidation reactor configurations. In particular, these models provide insight into the similarities and differences between photoreactors based on structured honeycombed monoliths, and those based on reticulated foams or other random catalyst supports.

For honeycombed monoliths, a deterministic first-principles radiation field model provides the channel wall light intensity profile down the length of a single channel in the monolith. A three-dimensional developing flow convection–diffusion reaction model employing this radiation field submodel predicts the velocity and concentration fields. The model shows that light intensity gradients in a monolith of typical dimensions are severe, that only a fraction of the monolith can be effectively photo-activated, and as a consequence process performance is largely controlled by light distribution. For a given light source and photocatalyst combination, reactor performance scales according to the aspect ratio of the channeled monolith, the Reynolds number, and the Dahmköhler number.

For randomly structured monoliths, the radiation field must be determined by probablistic methods. Monte Carlo simulations show that the radiation field in such random porous structure scales according to the pore size distribution and the void fraction, and the photocatalyst film thickness. Reactor performance scales by the radiation field, the Peclet number, the Stanton number, and the Dahmköhler number. The complex interrelationship between the random structure of the monolith and the resulting radiation field and mass transfer behavior makes scaling of these reactor types particularly difficult.  相似文献   


4.
Macro- and micromixing in a continuous flow Taylor-vortex reactor with novel ribbed rotors were investigated and compared to the features of a classical cylindrical rotor. The characterisation was performed in a wide hydrodynamic range (40<Ta<2500 and 0.03<Re<0.51) through tracer experiments and the analysis of the rotor power consumption. Additionally, the flow patterns were visualised by using a rheoscopic fluid. The results show that the novel rotors equipped with ribs immobilise and stabilise the vortices. As compared to cylindrical rotors, micromixing is clearly enhanced while axial dispersion can be simultaneously reduced. Through the use of ribbed rotors, the operational window can be broadened considerably, in which the reactor runs at very low or moderate extent of macromixing.  相似文献   

5.
A model of continuous melt transesterification of bisphenol-A and diphenyl carbonate in a continuous stirred tank reactor is developed using phase equilibria assumption and the method of molecular weight moments. The model equations can be simplified into a polynomial system that has 17 equations and 17 unknowns. Solution of the polynomial system gives out almost every aspects of the continuous transesterification process. Molecular weight and polydispersity index, end group ratio of hydroxyl to phenyl carbonate, contents of molecular species, and lost diphenyl carbonate fractions are studied in different operation parameters.  相似文献   

6.
Ozone-water mass transfer was investigated using an oscillatory baffled reactor (OBR) operated as a semi-batch and as a co-current up flow continuous reactor. The effects of input ozone concentration, input gas and water flow rates, and oscillation conditions on gas hold up, volumetric mass transfer coefficient and mass transfer efficiency were determined. The same reactor was operated as a baffled column (without oscillation) and as a bubble column to assess the effect of the reactor arrangement on the mass transfer. The results show that the OBR was 5 and 3 times more efficient for ozone-water mass transfer than the baffled and bubble columns, respectively. The enhancement obtained with OBR over the baffled column reactor was found to decrease with gas flow rate due to changes in bubble flow pattern from homogenous to heterogeneous. Under continuous flow conditions, the performance of the baffled reactor and the OBR were found to be twice efficient for ozone-water mass transfer than when operating under semi-batch conditions. The mass transfer effeciency (MTE) was found to increase from 57% using the baffled reactor to 92% with OBR under continuous flow at water and gas superficial velocities of 0.3 and 3.4 cm s−1, respectively.  相似文献   

7.
Results are presented for the photocatalytic degradation of an azo dye, reactive blue 69, in a novel hybrid photocatalytic reactor, illuminated by solar radiation and artificial light, under different experimental conditions. A radiative transfer model, based on the P1 approximation, is proposed to evaluate the distribution of local volumetric rate of photons absorption (LVRPA) in the reaction space of the hybrid photocatalytic reactor. This radiation transfer model, together with a first order kinetic model, is used to fit the experimental results. The model correlates well with the experiments, and values for an apparent first order kinetic constant for the degradation of RB69 are obtained. The proposed radiative transfer model (P1 approximation) is simple enough to allow for an analytical solution, yet complex enough to take into account scattering of radiation in all directions and to all orders. Simulations show a distribution of LVRPA that varies smoothly at small catalyst concentration, and is very quickly attenuated for high concentrations. Around of 70% of photons supplied by both illumination sources to the hybrid photocatalytic reactor are absorbed by the catalyst. The experimental results show the decolorization degree increases as catalyst concentration increase. In relation to mineralization process, the removal of total organic carbon is nearly complete after 5 hours irradiation. This indicates that not only the azo bond breakage is carried out, but also that the intermediate species are mineralized. The apparent kinetic constant has a dependence on catalyst concentration which is described by an adsorption model. Addition of oxygen by means of an air diffuser proves to be beneficial to the process.  相似文献   

8.
An experimental investigation was carried out to study the mixing performance and flow behavior in a continuous powder mixer for a typical pharmaceutical mixture. Blender performance, characterized by the relative standard deviation (RSD) of composition of blend samples taken at the blender discharge and by the variance reduction ratio (VRR) of the blender, was measured as a function of impeller rotation rate, flow rate and blade configuration. The flow behavior in the continuous mixer was characterized using the residence time distribution (RTD) and powder hold-up measurements. To quantify the strain applied to the powder in the blender, the number of blade passes experienced by the powder in the blender was calculated using the residence time measurements. The relationship between different experimental parameters and mean residence time and mean centered variance was examined. The mixing performance was largely dominated by the material properties of the mixture, which had a larger effect than the ingredient flow rate variability contributed by the feeders. Holdup was strongly dependent on impeller rotation rate; as impeller rotation rate increased, holdup (and therefore, residence time) decreased sharply. As a result, intermediate rotation rates showed the best mixing performance. Blade configuration affected performance as well; blade patterns where some of the blades push the powder backwards improved the mixing performance.  相似文献   

9.
In the present work the partial oxidation of methanol to formaldehyde has been studied as an example of strongly exothermic reaction affected by internal diffusion in order to deep the topic of mass and heat transfer in packed-bed catalytic reactors both at particle level, introducing the calculation of the effectiveness factor for complex reactions network, and at reactor level, for what concerns long range gradients of composition and temperature. The aim of the work is to stress the impact of the use of rigorous numerical methods, today possible for the high performances reached by the computers, in the solution of a simultaneous set of many differential equations that are necessary to describe completely the mentioned system. A complete mathematical model of the particle and the reactor is presented and a solution strategy is reported for the chosen reaction by considering a reliable kinetic law and evaluating related parameters from experimental data reported by the literature. Calculation results are reported for both particle internal profiles and reactor simulation. The described approach can easily be extended to many other devices and reactors geometry such as, e.g., the ones used in the field of environmental catalysis.  相似文献   

10.
TiO2 layers were grown via pulse type microarc oxidation process under different applied voltages, frequencies, and duty cycles. Surface chemical composition and phase structure of the synthesized layers were studied utilizing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to investigate surface morphology and topography of the layers. It was revealed that the layers had a porous structure with both anatase and rutile phases. The anatase relative content in the layers increased with the applied frequency; meanwhile, it decreased with duty cycle at low applied voltages, but increased with duty cycle at high applied voltages. The topographical evaluations showed that the surface of the layers is rough with an average roughness of about 1.8-9.9 nm. It was also found that the pore size decreased with the current frequency and increased with duty cycle at a fixed applied voltage. Photocatalytic performance of the layers was also examined by measuring the decomposition rate of methylene blue solution under ultraviolet irradiation of the surface. It was also found that about 94% of methylene blue solution was decomposed on the synthesized catalysts after 160 min UV irradiation of the surface.  相似文献   

11.
In the present study, we developed a novel simulation model of the U-tube reactor for treating drinking water, which is composed of a coaxial inner tube serving as an efficient concurrent down-flow ozone dissolver and an outer column carrying out reactions between ozone and organic substances including odorous materials (2-methylisoborneol: 2-MIB) dissolved in the raw water. We assume that the U-tube is composed of a plug flow section (inner tube) followed by a tanks-in-series section (outer bubble column) and take into account the effect of the hydrostatic pressurization on the flow and absorption equilibrium for the gaseous components including ozone and other inactive species in developing the mass balance models. An algorithm is constructed of the differential multiple mass balance equations for the inner tube sections and multiple difference mass balance equations in the series tanks in the outer column section to enable the scale-up from a pilot plant to a full-scale plant. The gas holdup and gas-liquid mass transfer coefficient were measured in a model reactor and correlated for the use of the simulation calculation. Available literature data and correlations on the rates of reactions between ozone and organic substances including odorous material 2-MIB, gas-liquid equilibrium for active and inactive gases and axial fluid mixing properties are also incorporated in the simulation calculation. The simulation results well explained the available data of the ozone absorption efficiency and the removal efficiency of the odorous material in a pilot U-tube reactor. The simulation procedure was also successfully extended to verify the performance of a full-scale U-tube reactor. It is shown that the ozone absorption is practically a single function of the gas/liquid ratio while the removal efficiency of the odorous material is a single function of the ozone dose for a specified U-tube configuration.  相似文献   

12.
This study compares, experimentally and theoretically, five different modes of supplying oxygen to a membrane-aerated biofilm reactor (MABR), and search for the more efficient ways of treating wastewaters. A single-tube MABR was used to measure the decrease of an organic substrate (sodium acetate) in water by supplying oxygen in different modes, namely: (1) by feeding the membrane tube either with oxygen or air (or none of them); (2) in some cases by simultaneous sparging air to the residual water. The dynamics of the substrate and oxygen consumption were measured during the batch experiment, and two mathematical models are developed to predict their transient responses using a Monod kinetic with dual substrate limitation. The models predict biomass growth and the production of extracellular polymer substances (EPS), which in turn causes the biofilm to grow; they account for the counter-diffusion of substrate and oxygen within the EPS structure that contains the cells, and one of them incorporates the mass transport by convection and diffusion in the surrounding liquid contained inside the interconnected pores and channels within the biofilm. Transport and kinetic parameters are estimated from experiments, and both models successfully predict concentration measurements in some of the set of experiments. It was found that all of the modes of oxygen supplied in a MABR were more efficient than the traditional suspended cell process.  相似文献   

13.
A statistical experimental design was employed to study the effects of pressure, temperature, catalyst loading, and mixing speed on the solubilities (C*) and volumetric gas/liquid mass transfer coefficients (kLa) for H2, N2, CO, CH4 and C2H4 in a liquid mixture of hexanes containing iron oxide catalyst in a 4-litre agitated autoclave. Statistical correlations for kLa values for the gases used were developed. Mixing speed and solid concentration showed the strongest effects on kLa. At low catalyst concentrations, a maximum in kLa was observed and at concentrations > 37 mass%, kLa decreased by more than one order of magnitude.  相似文献   

14.
A mathematical model of a solid electrolyte membrane reactor is presented which accounts for the prevailing physical phenomena of the electrochemical partial oxidation of n-butane to maleic anhydride. From an analysis of characteristic dimensionless numbers it was concluded that the reactor behaviour can be described by a one-dimensional pseudo-homogeneous approach with respect to the anodic gas channel and a one-plus-one-dimensional electrochemical model. Beside mass and charge transport processes, electrochemical charge transfer reactions as well as heterogeneously catalysed oxidation reactions are considered. As kinetic model a modified Mars–van Krevelen approach is suggested. Experimental results of oxygen pumping and butane oxidation experiments were used to determine kinetic parameters and to validate the model.  相似文献   

15.
16.
Autooxidation of car-3-ene was carried out in a large scale packed recirculating reactor, where the catalyst cobalt acetylacetonate and the liquid were recirculated and sprayed on top of an inert packing. Gas is introduced from the bottom. The mass transfer parameters and mixing characteristics of the reactor were determined. The effect of catalyst quantity, operating pressure on car-3-ene conversion, and selectivity for various products were studied. The reaction system was mathematically modelled, and the simulation compared with the observed behaviour. The rate constants of the elementary reaction steps had been determined separately in a laboratory reactor.  相似文献   

17.
Two different Ti/Pt–Ir materials (commercial and home made) and Ti/PdO + Co3O4 were investigated for their electrocatalytic properties versus Cl2 evolution reaction. The materials were used in a batch electrochemical reactor to treat biologically recalcitrant di-azo compound. An electrochemically driven oxidation, mediated by a Cl2/Cl couple, proved efficient for destruction of this complex organic molecule, causing cleavage of the conjugated double bonds and destruction of unsatured bonds. Both Ti/Pt–Ir materials performed well; lower kinetics obtained with the Ti/PdO + Co3O4 anode was caused by adsorption of the model compound, evidenced in preliminary voltammetric measurements. The dye oxidation reaction followed the second order kinetics with partial orders in the model compound and (time varying) chlorine concentrations equal to one. Specific energy consumption of 3.12 kWh m−3 proved the process more economic than the homogeneous phase oxidation.  相似文献   

18.
This work presents the supercritical water oxidation (SCWO) of quinoline, a nitrogen‐containing organic compound found in pharmaceutical wastewaters, to products that are more readily biodegradable. The effects of the operating variables, namely process temperature, stoichiometric ratio of oxidant to organic, residence time and system pressure were studied in order to optimise quinoline removal efficiency and to investigate the fate of carbon and nitrogen after oxidation. Hydrolysis experiments undertaken in the range 480–650 °C showed no significant degradation of quinoline. The present study confirmed that, as an alternative to incineration, the process is fast and effective in treating quinoline in water, converting it into primarily carbon dioxide (CO2), water (H2O) and nitrogen gas (N2) and to a lesser extent ammonium ions (NH4+). Temperature was shown to be the primary variable in the complete destruction of quinoline and TOC reduction, upon operating at around 250 bars. Essentially, complete quinoline removal was observed above 575 °C and complete TOC removal was obtained at 650 °C, where CO2 was the main reaction product. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
This paper reports experimental and modeling work for the laboratory scale-up of continuous “trickle-bed” reactors for the electro-reduction of CO2 to potassium formate. Two reactors (A and B) were employed, with particulate tin 3D cathodes of superficial areas, respectively, 45 × 10−4 (2–14 A) and 320 × 10−4 m2 (20–100 A). Experiments in Reactor A using granulated tin cathodes (99.9 wt% Sn) and a feed gas of 100% CO2 showed slightly better performance than that of the tinned-copper mesh cathodes of our previous communications, while giving substantially improved temporal stability (200 vs. 20 min). The seven-fold scaled-up Reactor B used a feed gas of 100% CO2 with the aqueous catholyte and anolyte, respectively [0.5 M KHCO3 + 2 M KCl] and 2 M KOH, at inlet pressure from 350 to 600 kPa(abs) and outlet temperature 295 to 325 K. For a superficial current density of 0.6–3.1 kA m−2 Reactor B achieved corresponding formate current efficiencies of 91–63%, with the same range of reactor voltage as that in Reactor A (2.7–4.3 V), which reflects the success of the scale-up in this work. Up to 1 M formate was obtained in the catholyte product from a single pass in Reactor B, but when the catholyte feed was spiked with 2–3 M potassium formate there was a large drop in current efficiency due to formate cross-over through the Nafion 117 membrane. An extended reactor (cathode) model that used four fitted kinetic parameters and assumed zero formate cross-over was able to mirror the reactor performance with reasonable fidelity over a wide range of conditions (maximum error in formate CE = ±20%), including formate product concentrations up to 1 M.  相似文献   

20.
A novel annular reactor for kinetic studies at high temperature and flow conditions has been designed to keep eccentricity tolerances below 10%. In a previous work, we have shown that it is very important to keep such low eccentricity values in order to collect reliable kinetic data from this type of reactors. As proposed in this study, a modified reactor with the use of a spacer could guarantee an annular duct with low levels of eccentricity. Manufacturing tolerances or deformation effects giving rise to eccentricity can be significantly minimised when using this apparatus. The reactor has been both experimentally and theoretically characterised. Carbon monoxide oxidation was used as a model reaction under mass-transfer limited conditions revealing an eccentricity of ∼5%. With such small eccentricity levels, a concentric annular form can be assumed in the reactor analysis. Simple 1D or 2D models can therefore be inexpensively used in the evaluation of the kinetic data. Also, prior to the design of the annular reactor, a numerical investigation was carried out to clarify the effects of eccentricity, physical properties of the carrier gas and the annular aspect ratio on mass-transfer limitations. Contrary to expectations, a considerable increase in the fuel mass-diffusivity by carrier gas substitution did not change the mass-transfer rates for cases when eccentricity and aspect ratios were high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号