首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a multi-objective approach is proposed to find optimum operating condition of natural gas network. For this purpose, a thermodynamic modeling of natural gas through the main elements of the network i.e. pipelines and compressor stations (CSs) is performed. This study aims to find optimum values of three conflicting objective functions namely maximum gas delivery flow and line pack, and minimum operating cost (sum of fuel consumption and carbon dioxide emission costs), simultaneously. Here, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied by considering fourteen decision variables: number of running turbo-compressors (TCs) and rotational speed of them in compressor stations as well as gas flow rate and pressure at injection points. The results of multi-objective optimization are obtained as a set of multiple optimum solutions, called ‘the Pareto optimal solutions’. Furthermore, a set of typical constraints, governing the pipeline operation, is subjected to obtain more practical solutions. To control the constraints satisfaction and to find better solutions in optimization process, the penalty functions are defined and applied. Sensitivity analysis of change in the objective functions, when the optimum decision variables vary, is also conducted and the degree of each parameter on conflicting objective functions is investigated.  相似文献   

2.
Suspended particles in the natural gas transmission and distribution network of the city of Kerman, Iran were investigated. Particle concentration and size distribution were measured in different locations of the natural gas pipeline network. Particle samplings were carried out in two seasons: summer, when there is the lowest consumption, and winter, when there is the highest consumption of natural gas. Additional particle characterization was carried out by scanning electron microscopy coupled with energy dispersion X-ray (SEM/EDX) and X-ray diffraction(XRD) analyses. Particle concentration was found to be significantly higher in winter as compared to summer. The range of particle concentrations in summer was from 0.12 mg/Nm3 at the end of the pipeline to 4.7 mg/Nm3 at the network entrance, and from 0.30 mg/Nm3 to 22.1 mg/Nm3 in winter. Particle size distribution showed a higher frequency of smaller particles in winter than in summer. Larger particles were more likely to exist at the network entrance as compared to the exit. The average particle size ranged from 181 μm at the network end to 253 μm at the entrance in summer, and from 74 μm to 209 μm in winter. Particle characterization confirmed the presence of corrosion products in the suspended particles.  相似文献   

3.
A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm−2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm−2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.  相似文献   

4.
The present study presents thermodynamic, economic and environmental (emissions cost) modeling of a solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system integrated with a multi stage flash (MSF) desalination unit. A heuristic optimization method, namely, multi-objective genetic algorithm (MOGA) is employed afterwards to obtain the optimal design parameters of the plant. The exergetic efficiency and the total cost rate of the system are considered as the objective functions of the optimization procedure; where, the total cost rate of the system (including the cost rate of environmental impact) is minimized while the exergetic efficiency is maximized. Applying the optimization method, a set of optimal solutions is achieved and the final selected optimal design leads to an exergetic efficiency of 46.7%, and a total cost of 3.76 million USD/year. The payback time of the selected design is also determined to be about 9 years. Although the determined value for the payback period seems to be relatively high for the proposed plant (due to the high capital cost of the SOFC system), this integrated technology is expected to be promising in the near future as the capital costs of SOFCs are decreasing and their operational lifetimes are increasing.  相似文献   

5.
Carbon spheres (CSs) of 1-15 μm in size were found in metallurgical coke for the first time as by-products of large-scale industrial process. CSs form a dense cover on the surface of pores and occur as separate aggregates varying in size and shape. Their formation may be associated with the circulation of coke oven gas in the contact area between the coke and the refractory silica bricks of the oven. If the amount of CSs in metallurgical coke proves substantial, the evaluation of its properties (reactivity, strength) should be re-considered.  相似文献   

6.
As the gas industry has developed, gas pipeline networks have evolved over decades into very complex systems. A typical network today might consist of thousands of pipes, dozens of stations, and many other devices, such as valves and regulators. Inside each station, there can be several groups of compressor units of various vintages that were installed as the capacity of the system expanded. The compressor stations typically consume about 3–5% of the transported gas. It is estimated that the global optimization of operations can save considerably the fuel consumed by the stations. Hence, the problem of minimizing fuel cost is of great importance. Consequently, the objective is to operate a given compressor station or a set of compressor stations so that the total fuel consumption is reduced while maintaining the desired throughput in the line. Two case studies illustrate the proposed methodology. Case 1 was chosen for its simple and small‐size design, developed for the sake of illustration. The implementation of the methodology is thoroughly presented and typical results are analyzed. Case 2 was submitted by the French Company Gaz de France. It is a more complex network containing several loops, supply nodes, and delivery points, referred as a multisupply multidelivery transmission network. The key points of implementation of an optimization framework are presented. The treatment of both case studies provides some guidelines for optimization of the operating performances of pipeline networks, according to the complexity of the involved problems. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
Heat exchanger networks are an integral part of chemical processes as they recover available heat and reduce utility consumption, thereby improving the overall economics of an industrial plant. This paper focuses on heat exchanger network design for multi-period operation wherein the operating conditions of a process may vary with time. A typical example is the hydrotreating process in petroleum refineries where the operators increase reactor temperature to compensate for catalyst deactivation. Superstructure based multi-period models for heat exchanger network design have been proposed previously employing deterministic optimisation algorithms, e.g. (0005 and 0180). Stochastic optimisation algorithms have also been applied for the design of flexible heat exchanger networks recently (0110 and 0115). The present work develops an optimisation approach using simulated annealing for design of heat exchanger networks for multi-period operation. A comparison of the new optimisation approach with previous deterministic optimisation based design approaches is presented to illustrate the utilisation of simulated annealing in design of optimal heat exchanger network configurations for multi-period operation.  相似文献   

8.
A strategic planning optimization model is proposed for a network of natural gas to liquids (GTL) systems, and it is solved using a rolling horizon strategy. The model formulation determines the strategic and tactical decisions of the GTL supply chain over a long time horizon. The decisions to build new GTL refineries may be made over the span of 30 years and their operations cover the span of 60 years. Multiple capacities of GTL refineries (i.e., 1, 5, 10, 50, and 200 thousand barrels per day) that produce gasoline, diesel, and kerosene commensurate to the United States demand ratio may exist in the network. The parameter inputs include the locations, availabilities, and prices of natural gas in the United States discretized by county, the delivery locations of fuel products, and the transportation costs of every input and output of the refinery, defined for each time period. Formulated as a large-scale mixed-integer linear optimization (MILP) model, the problem is solved using a rolling horizon strategy for tractability. Case studies on the state of Pennsylvania are presented for different planning schemes and their impact on the economic performance of the GTL network is discussed.  相似文献   

9.
Integrating diverse energy sources to produce cost‐competitive fuels requires efficient resource management. An optimization framework is proposed for a nationwide energy supply chain network using hybrid coal, biomass, and natural gas to liquids (CBGTL) facilities, which are individually optimized with simultaneous heat, power, and water integration using 162 distinct combinations of feedstock types, capacities, and carbon conversion levels. The model integrates the upstream and downstream operations of the facilities, incorporating the delivery of feedstocks, fuel products, electricity supply, water, and CO2 sequestration, with their geographical distributions. Quantitative economic trade‐offs are established between supply chain configurations that (a) replace petroleum‐based fuels by 100%, 75%, and 50% and (b) utilize the current energy infrastructures. Results suggest that cost‐competitive fuels for the US transportation sector can be produced using domestically available coal, natural gas, and sustainably harvested biomass via an optimal network of CBGTL plants with significant GHG emissions reduction from petroleum‐based processes. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
A comprehensive kinetic model for oxidative coupling of methane (OCM) on Mn/Na2WO4/SiO2 catalyst was developed based on a microcatalytic reactor data. The methane conversion and ethylene, ethane, carbon monoxide and carbon dioxide selectivities were obtained in a wide range of operating conditions including 750 < < 875 °C, 4 < CH4/O2 < 7.5 and space time between 30 and 160 kg · s/m3 at = 657 mmHg. The reaction networks of five kinetic models with appropriate rate equation type were compared together. The kinetics rates parameters of each reaction network were estimated using genetic algorithm optimization method. After comparing the reaction networks, the reaction network presented by Stansch et al. was found to best represent the OCM reaction network and was further used in this work. This kinetic network considers both catalytic and gas-phase as well as primary and consecutive reaction steps to predict the performance of the OCM. Comparing the experimental and predicted data showed that presented model has a reasonable fit between the experimental data and the predicted values with average absolute relative deviation of ± 9.1%.  相似文献   

11.
We have employed computer-aided furnace design and process simulation to optimize the conditions under which single-walled carbon nanotubes (SWCNTs) may be grown in high yields on 4 in. wafers for electronic device applications. Hydrokinetic simulations were performed to obtain optimized furnace structures and process conditions in terms of gas flow, temperature, and gas speed. Shower head structures and a flow isolation barrier were installed in an experimental 6 in. furnace, as suggested by the hydrokinetic simulations. To ensure clean surfaces and uniform catalyst islands, catalyst patterns were lifted off using Au films or polydimethylsiloxane. Photolithography was used to fabricate field-effect transistors with SWCNTs grown on 4 in. wafer substrates. The total yield of the nanotube devices increased from 30.5% to 96.4% after optimization.  相似文献   

12.
Methane/natural gas storage and delivered capacity for three different activated carbons in dry and wet conditions were measured. In all tests the temperature of the bed was maintained constant at 277.15 K and pressure was increased up to 10 MPa. Natural gas storage capacity was less than methane storage capacity in dry conditions for all the three activated carbons tested, while the gas delivery was almost the same. One of activated carbon tested (NC120) showed the possibility of hydrate forming for pressures higher than 4 MPa but the amount of gas stored still was less than the amount stored in dry conditions over the whole range of pressure. The analysis of the gas delivered at each pressure steps shows that considerable amount of heavy components do not come out from the bed even at very low pressures in both dry and wet condition tests. Repeatability of the sorption/desorption processes - vital for possible commercial/industrial use - has been examined over various cycles.  相似文献   

13.
The optimal design of complex distillation systems is a highly non-linear and multivariable problem, with several local optimums and subject to different constraints. In addition, some attributes for the design of these separation schemes are often conflicting objectives, and the design problem should be represented from a multiple objective perspective. As a result, solving with traditional optimization methods is not reliable because they generally converge to local optimums, and often fail to capture the full Pareto optimal front. In this paper, a method for the multiobjective optimization of distillation systems, conventional and thermally coupled, with less than N − 1 columns is presented. We use a multiobjective genetic algorithm with restrictions coupled to AspenONE Aspen Plus; so, the complete MESH equations and rigorous phase equilibrium calculations are used. Results show some tendencies in the design of intensified sequences, according to the nature of the mixture and feed compositions.  相似文献   

14.
In view of high energy consumption and poor flexibility in boil-off gas (BOG) recondensation operation at liquefied natural gas (LNG) terminals, a flexible and cost-effective optimization including the control system and flow process has been proposed. The optimized control system maintains BOG recondenser pressure via the condensing LNG flow and recondenser liquid level via bypass LNG flow. A BOG recondensation process with pre-cooling operation utilizes high-pressure pump LNG to pre-cool compressed BOG before it is directed into recondenser. The engineering application in a case of 6.69 tons/hour (t/h) BOG and LNG output fluctuating between 49 t/h and 562 t/h shows, after the flexible and cost-effective optimization, that process energy decreases 91.2 kW, more 1.28 t/h BOG is recovered when LNG output load reaches the valley, and the operation stability is well improved.  相似文献   

15.
A dual circulating fluidized bed pilot plant was operated in chemical looping reforming conditions at a scale of 140 kW fuel power with natural gas as fuel. A nickel-based oxygen carrier was used as bed material. The pilot plant is equipped with an adjustable cooling system. Three experimental campaigns have been carried out at 747 °C (1020 K), 798 °C (1071 K) and 903 °C (1176 K), respectively. In each campaign, the global stoichiometric air/fuel ratio was varied step-wise between 1.1 and the minimum value possible to keep the desired operating temperature when the cooling is finally switched off. The results show that the fuel reactor exhaust gas approaches thermodynamic equilibrium. The residual amount of methane left decreases with increasing fuel reactor temperature. Further, the oxygen in the air reactor can be completely absorbed by the solids as soon as the air reactor operating temperature is higher than 900 °C (1173 K). Even though no steam was added to the natural gas feed no carbon formation was found for global excess air ratios larger than 0.4.  相似文献   

16.
In this study, model flue gas was bubbled into 0.25 L tribasic sodium citrate (TSC) solution being in 0.5 L glass absorber to remove its SO2 content. Size of gas bubbles, absorption temperature, gas flow rate, solution concentration and stirring rate were taken as working parameters to investigate their effect on SO2 removal from flue gas. The Taguchi's experimental design method was used to obtain optimum values of working parameters for SO2 saturation time of the TSC solution selected as a quality characteristic. The optimum levels of parameters to maximize the SO2 saturation time of TSC solution were coarse bubbles for gas delivery, 35 °C for absorption temperature, 1.5 slm for gas flow rate, 0.5 M for TSC solution concentration and 500 rpm for stirring rate. Under these conditions, the SO2 saturation time of the TSC solution was achieved as 511 min in average. The most effective parameters on the absorption of SO2 in TSC solutions were ranked to the least as solution concentration, gas flow rate, size of gas bubbles, absorption temperature and stirring rate.  相似文献   

17.
Traditionally, high-purity argon recovery from air is considerably difficult owing to the boiling point of argon close to that of oxygen. Recently with the increasing demands for argon, another attractive source of ammonia purge gas has been paid more attention. In this paper with an objective of minimizing energy consumption per argon product, the two-column process for recovering argon from hydrogen-depleted ammonia purge gas is analyzed and optimized in detail on the ASPEN PLUS platform. Firstly, the model of two-column process is set up using the standard unit operation blocks and PENG-ROB property method of ASPEN PLUS, in which validation of PENG-ROB property method is carried out by comparison with a total 623 experimental data from three aspects: vapor-liquid equilibrium, liquid phase density, and enthalpy. It is followed by the thermodynamic and simulation and sensitivity analysis, which on the one hand can reduce the number of decision variables related to optimization problem, and on the other hand can obtain reasonable parameter specification, variables initial values and ranges, thus effectively ensuring the later optimization algorithm converges quickly and accurately. Finally the built-in sequential quadratic programming (SQP) solver of ASPEN PLUS is adopted to solve the minimum energy consumption optimization problem of two-column process. On the processor of 2.66 GHz Intel(R) Core (TM)2 Duo CPU with 4 GB RAM, the whole optimization only takes CPU times 10 s or so to accomplish. The optimal results show that thermal state of feed to demethanizer is a very efficient and valuable means to reduce system energy consumption which at TC05 = 103 K is only 87.4% of that at TC05 = 109 K where TC05 is the temperature of feed to demethanizer directly reflecting its thermal state. The condensing pressure of hydrogen-depleted ammonia purge gas also plays a vital role in reducing system energy consumption which is less at higher condensing pressure, whereas it almost has no influence on the yield and purity of argon recovery. The optimal operating pressure of flash separator used to remove the residual hydrogen in the feed hydrogen-depleted ammonia purge gas is 0.4-0.6 MPa (A); the most economical reflux ratio of argon distillation column is 1.15, and that of demethanizer varies from 0.33 to 0.45 depending on thermal state of feed to demethanizer.  相似文献   

18.
A mathematical programming approach for automatic computation of the optimal configuration of artificial neural networks (ANNs) is presented. Training of the network is modelled as a mixed-integer program (MIP) where 0–1 binary variables are introduced to represent the existence (binary variable = 1) and non-existence (binary variable = 0) of the nodes and the interconnections between the nodes. The objective is to minimize the number of nodes and/or interconnections to meet a given error criteria. From modelling point of view, the key advantage of the proposed approach is that the user does not have to try different configurations of the network, a solution of the proposed MIP formulation automatically generates the optimal configuration of the network. From the implementation of ANN point of view, a simplified representation of the network is obtained, where redundant nodes and interconnections have been eliminated. A number of examples are presented to demonstrate the applicability of the proposed approach.  相似文献   

19.
Marcello De Falco 《Fuel》2011,90(2):739-747
The wide diffusion of fuel cell (FC) powered Zero-Emissions Vehicles (ZEVs) is stopped by hydrogen storage technological drawbacks, as high cost and low storage volume density. This obstacle can be overcome if a fuel processor, able to produce H2 to be fed to FC from a liquid fuel, is installed. In the present work, an innovative clean power generator for light-vehicles is presented, modelled and designed. Such a generator is realized by coupling the most market-appeal clean liquid fuel, the ethanol, and the most technologically strengthened and the only off-the-shelf fuel cell type, the PEMFC, by applying a membrane reactor (MR) for converting ethanol and separating the hydrogen produced in one single and compact device.A process scheme is described and a 4-tubes-and shell membrane reactor is modelled by means of a rigorous homogeneous 2D mathematical model, validated by experimental data.The effect of most important operating conditions, as gas mixture residence time, heating fluid temperature, steam-to-ethanol and sweeping-to ethanol ratios, operating pressure, is evaluated via simulation and optimal conditions are defined. Then, by applying the optimal conditions set, a design of ethanol MR + PEMFC system in substitution of a 4 kW Pb-battery pack for a light vehicle is proposed.Final results attest that a 1.52 m long, 0.4 m large 4-tubes-and-shell membrane reactor (total volume equal to 0.76 m3) is able to produce 64.7 NL/min of hydrogen, equal to the 4 kW FC feedstock requirement. The MR ethanol conversion is 98% and the percentage of H2 recovered through the Pd-Ag selective membrane on total H2 produced in the reactor is 67% about.  相似文献   

20.
Rafael B. Rios 《Fuel》2011,90(1):113-119
The use of vessels filled with activated carbon to store and transport natural gas (NG) at moderate pressures (about 3.5 MPa) and ambient temperature (about 298 K) has been studied as a potential alternative to compressed natural gas at high pressures (ca. 20 MPa). The present study provides an experimental investigation of charge and discharge cycles of natural gas in a prototype storage vessel filled with activated carbon and analyses the effect of the gas composition on the adsorption capacity. The adsorption properties were evaluated by measuring isotherms for each component of NG in a magnetic suspension balance. The selectivities of the main constituents of natural gas in relation to methane were determined and the influence of the pressure on the selectivity was also observed. Although NG is composed mainly of methane (ca. 90% vol.), our experimental results indicate that the preferential adsorption of the heavier hydrocarbons and CO2 should be properly taken into account for the evaluation of the behavior of adsorbed natural gas systems along several charge and discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号