首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Kuchta  L. Firlej  P. Pfeifer 《Carbon》2010,48(1):223-231
Theoretical limits of the hydrogen adsorption in carbon nanospaces are modeled using Monte Carlo simulations. A detailed analysis of storage capacity of slit pores has been performed as a function of the pore size, gas pressure (up to 100 bars) and temperature of adsorption (77 and 298 K). The H2-slit wall interaction has been modeled assuming energies of adsorption ranging from 4.5 kJ/mol (pure graphene surface) to 15 kJ/mol (hypothetical chemically modified graphene). The quantum nature of H2 has been incorporated in the calculations using the Feynman-Hibbs approach. It has been shown that in a hypothetical chemically modified porous carbon, with energy of adsorption of 15 kJ/mol or higher and pore size between 0.8 and 1.1 nm, the gravimetric and volumetric storage capacity can achieve targets required for practical applications. The relation between the energy of adsorption and the effective delivery has been discussed.  相似文献   

2.
The acid corrosion inhibition process of mild steel in 1 M HCl by 1-butyl-3-methylimidazolium chlorides (BMIC) and 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) has been investigated using electrochemical impedance, potentiodynamic polarization and weight loss measurements. Potentiodynamic polarization studies indicate the studied inhibitors are mixed type inhibitors. For both inhibitors, the inhibition efficiency increased with increase in the concentration of the inhibitor and the effectiveness of the two inhibitors are in the order [BMIM]HSO4 > BMIC. The adsorption of the inhibitors on mild steel surface obeyed the Langmuir's adsorption isotherm. The effect of temperature on the corrosion behavior in the presence of 5 × 10−3 M of inhibitors was studied in the temperature range of 303-333 K. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy of activation (ΔH), entropy of activation (ΔS), adsorption equilibrium constant (Kads) and standard free energy of adsorption (ΔGads) were calculated to elaborate the mechanism of corrosion inhibition.  相似文献   

3.
Masao Suzuki  Masashi Iino 《Fuel》2004,83(16):2177-2182
The solvent extracts of Upper Freeport and Illinois No.6 coals were mixed with N-methyl-2-pyrolidinon (NMP) and annealed at 353 K to produce the gelatinous materials. Differential scanning calorimetric measurements revealed that the materials can hold significant amounts of nonfreezable NMP (as much as 3 g NMP per 1 g coal extracts) which disperse in the materials on a molecular scale, indicating the materials are not phase separated. The thermal behaviors were measured macroscopically as a function of the extract concentration using a needle penetrometer during heating from 223 to 360 K. The penetration-temperature curves were analyzed to estimate the apparent viscosity (ηa). During the penetrations, ηa was decreased very rapidly, approximately four orders of the magnitude by a temperature increase of 20 K, suggesting that the coal extracts-NMP mixtures undergoes a gel to sol transition. The heats of dissociation of crosslinks (ΔHm) were estimated by applying Eldridge-Ferry equation. The ΔHm of coal extracts-NMP mixtures was relatively small, i.e. approximately 10 kJ/mol, whereas the ΔHm of polyvinyl alcohol-NMP gel in which the hydrogen bonds contribute the formation of the physical network structures, was about 65 kJ/mol. Not the specific interaction such as hydrogen bonds, but weak interactions such as van der Waals force were likely to contribute the formation of the coal extracts-NMP gel.  相似文献   

4.
The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaOx/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaOx/Pt surfaces. TaOx/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K2TaF7 (20 wt%) at 800 °C and then by annealing in air at various temperatures (200, 400 and 600 °C). The thus-fabricated TaOx/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (Hads/Hdes) reaction. The oxidation of Ta to the stoichiometric oxide (Ta2O5) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the Hads/Hdes reaction at TaOx/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 °C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaOx/Pt electrode is a diffusion-controlled process.  相似文献   

5.
The inhibition effect of 2-mercaptothiazoline (2MT) on the corrosion behavior of mild steel (MS) in 0.5 M HCl solution was studied in both short and long immersion times (120 h) using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. For long-term tests, hydrogen gas evolution (VH2t) and the change of the open circuit potential with immersion time (Eocp − t) were also measured in addition to the former three techniques. The surface morphology of the MS after its exposure to 0.5 M HCl solution with and without 1.0 × 10−2 M 2MT with the different immersion times was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal stability of the inhibitor film was investigated by thermogravimetric analysis (TGA). The value of activation energy (Ea) for the MS corrosion and the thermodynamic parameters such as adsorption equilibrium constant (Kads), free energy of adsorption (ΔGads), adsorption heat (ΔHads) and adsorption entropy (ΔSads) values were calculated and discussed. The potential of zero charge (PZC) of the MS in inhibited solution was studied by the EIS method, and a mechanism for the adsorption process was proposed. The results showed that 2MT performed excellent inhibiting effect for the corrosion of the MS. Finally, the high inhibition efficiency was discussed in terms of adsorption of inhibitor molecules and protective film formation on the metal surface. TGA results also indicated that the inhibitor film on the surface had a relatively good thermal stability.  相似文献   

6.
Adsorption of Pb(II) ion by a novel extractant-impregnated resin, EIR, was studied as a function of various experimental parameters using batch adsorption experiments. The new EIR was prepared by impregnating gallocyanine (GCN) onto Amberlite XAD-16 resin beads. The EIR was characterized by nitrogen analysis and SEM micrographs. The new EIR showed excellent selectivity factor values (α) for Pb(II) adsorption respect to other metal ions. The effects of some chemical and physical variables were evaluated and the optimum conditions were found for Pb(II) removal from aqueous solutions. The equilibrium adsorption isotherm was fitted with the Langmuir adsorption model. The maximum adsorption capacity (qmax) of EIR for Pb(II) ions was found to be 367.92 mg g−1. The kinetic studies showed that the intra-particle diffusion is the rate-controlling step. Also, the intra-particle diffusion coefficients, Dip values, were of the order of 10−12 m2 s−1. The values of enthalpy (ΔH°) were positive, which confirms the endothermic nature of adsorption process. Also, the positive entropy changes (ΔS°) were showed that the randomness increased along with the adsorption process. In addition, the obtained negative values of Gibbs free energy (ΔG°) indicated feasible and spontaneous nature of the adsorption process at different temperatures. The new adsorbent was very stable so that it can be successfully used for many consecutive cycles without significant loss in its adsorption capacity.  相似文献   

7.
Activated carbon xerogels, with selected characteristics, were doped with Ni, using different methods, and tested for hydrogen storage. The results obtained show that the amount of nickel incorporated, the Ni-carbon interaction and the nickel particle size distribution depend more on the doping method used than on the textural properties of the carbon support. The amount of nickel incorporated by strong electrostatic adsorption is lower than that incorporated by dry impregnation. However, the strong electrostatic adsorption method produces Ni-doped carbon xerogels with a high Ni-carbon interaction and a narrower Ni particle size distribution. The influence of Ni on H2 storage capacity depends on the operating conditions and the doping conditions used. Thus, at −196 °C and 40 bar, storage capacity seems to be mainly influenced by the textural properties of carbon support while, at 25 °C and 200 bar, the spillover effect plays a significant role, being the interaction between the support and Ni particles key factor in the storage process. The best Ni-doped carbon xerogels obtained in this work exhibit hydrogen storage capacities of 6 wt.% and 31.8 g l−1 at −196 °C and 40 bar.  相似文献   

8.
We have measured Incoherent Inelastic Neutron Scattering (IINS) spectra of H2 physisorbed in high purity chemically activated carbon (AC) at different surface coverage and at temperatures near the triple point of bulk hydrogen. Our experimental results and DFT calculations show that at low surface coverage, due to the very low corrugation of the adsorption potential, and in the absence of H2-H2 lateral interactions, the adsorbed molecules are practically free to translate in the 2D plane parallel to the surface. Model calculations show that a complete mixing between the sub-states of the J = 1 manifold occurs on the free surface. The J = 0-to-1 rotational transition should split if the H2 molecule is adsorbed in a slit type pore. Rotational splitting of up to 13 meV is found in the narrowest pores of around 6 Å investigated. The calculated isosteric heat of adsorption for molecules adsorbed on the free surface, at different sites and molecule orientations, range between −39 and −42 meV/H2 at 77 K. In the optimum size slit pores, these numbers double up. Micropore volume of 0.34-0.45 ml/g carbon, and an upper limit of 4 wt% hydrogen storage is anticipated for the investigated material.  相似文献   

9.
Z. Elouear  J. Bouzid  N. Boujelben 《Fuel》2008,87(12):2582-2589
The removal characteristics of cadmium (Cd(II)) and nickel (Ni(II)) ions from aqueous solution by exhausted olive cake ash (EOCA) were investigated under various conditions of contact time, pH, initial metal concentration and temperature. Batch kinetic studies showed that an equilibrium time of 2 h was required for the adsorption of Ni(II) and Cd(II) onto EOCA. Equilibrium adsorption is affected by the initial pH (pH0) of the solution. The pH0 6.0 is found to be the optimum for the individual removal of Cd(II) and Ni(II) ions by EOCA. The adsorption test of applying EOCA into synthetic wastewater revealed that the adsorption data of this material for nickel and cadmium ions were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The estimated maximum capacities of nickel and cadmium ions adsorbed by EOCA were 8.38 and 7.32 mg g−1, respectively. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change (ΔG°) and the enthalpy change (ΔH°) showed that the process was feasible and endothermic respectively. As the exhausted olive cake is discarded as waste from olive processing, the adsorbent derived from this material is expected to be an economical product for metal ion remediation from water and wastewater.  相似文献   

10.
Using multi-walled carbon nanotubes (MWCNTs), the present study focuses on their electrochemical hydrogen storage capacities. The results showed that the hydrogen desorption process is composed of two steps with voltages around −0.75 and −0.15 V. Hydrogen adsorption at −0.15 V took place at temperatures above 30 °C, and the amount of energy required for adsorbing hydrogen was 1.68 eV. The hydrogen storage capacity increased with increasing electrolyte temperature from 30 to 60 °C in both steps. The hydrogen storage capacity of the MWCNTs treated at different atmospheres showed that the decrease in the graphitization of MWCNTs led to the increase in hydrogen adsorption. The results also showed that the MWCNTs treated in a CO2 atmosphere had the highest hydrogen storage capacity at −0.15 V.  相似文献   

11.
A 50 nm samarium film capped with a 7 nm palladium overlayer switched from a metallic to semiconducting state during ex-situ hydrogen loading via electrochemical means at room temperature. The transition is accompanied by a change in transmittance measured during hydrogen loading and the associated optical appearance. The monitoring of working electrode (WE) potential, the transmittance and chi potential difference (Δχ) has been used to identify the phases present during hydrogen loading. Deloading of hydrogen has been studied in open circuit potential condition. Glancing angle X-ray diffraction (GAXRD) studies show that the rhombohedral structure of metallic samarium film (a0=8.989 Å) changes to hexagonal structure of the SmH3−δ film with average lattice parameters of a=3.775 Å and c=6.743 Å. A direct optical band gap of 2.9 eV has been obtained for SmH3−δ film and 2.0 eV for SmH2 ± ε film from reflectance and transmittance data. Removal of hydrogen from SmH3−δ leads to the formation of localized states within the band whose signature is clearly seen in transmittance and Tauc’s plot curves of SmH2 ± ε film. The Hall coefficient RH measured as a function of hydrogen concentration, changes from a metal-like value −14.23×10-10 m3/C to −1001.1×10−10 m3/C for SmH3−δ films. On unloading hydrogen, the value of RH changes to −3.56×10−10 m3/C at the dihydride composition.  相似文献   

12.
Tungsten and nickel tungsten carbides were evaluated as the anode catalysts of a polymer electrolyte fuel cell (PEFC). These catalysts were prepared by the temperature-programmed carburization of tungsten and nickel tungsten oxides from 573 to 873-1073 K in a stream of 20% CH4/H2 and kept at temperature for 3 h. The 30% tungsten and nickel tungsten carbides mixed with Ketjen carbon (KC) were evaluated by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and electrocatalytic activity (I-V performance) using a single cell. The W1023/KC catalyst achieved a power density of 6.4 mW/cm2 (current density: 15.2 mA/cm2) which corresponded to 5.7% of that achieved by a commercial 20% Pt/C catalyst in a single cell (20% Pt/C: 111.7 mW/cm2) using our setup. From the XRD data, α-W2C together with a small amount of WC was active during the anodic oxidation. The maximum power density of the 30 wt% 873 K-carburized NiW/KC was 8.2 mW/cm2 at the current density of 19.0 mA/cm2 which was 7.3% of the 20 wt% Pt/C.  相似文献   

13.
The mullitisation kinetics in a sanitary-ware-like precursor system is here investigated by means of high-temperature X-ray powder diffraction, as a function of the filler/flux ratio. We used a blend based on kaolinite (50 wt%), quartz (10-28 wt%) and Na-feldspar (22-40 wt%). The results show that the content of feldspar boosts the formation of mullite as proven by the apparent activation energy values determined, ranging from 394 to 1111 kJ/mol, and giving a dEa/dxfeldspar ∼ −23 kJ/mol/wt (xfeldspar = feldspar weight fraction). The mullitisation temperature has also been observed to depend on the Na-feldspar content, inasmuch as the sample bearing the smallest amount of feldspar flux exhibits a mullite growth onset between 1100 and 1150 °C, that is at a temperature about 50 °C higher than the one observed in the richer blends. The mullitisation kinetic process is in this work described as a one-mechanism transformation, satisfactorily formalised by Avrami-Erofeyev equation.  相似文献   

14.
We recently showed nickel-underpotential deposition (Ni-UPD) occurs on polycrystalline or single crystal platinum electrodes in acidic media. Whereas the decoupling of the nickel and hydrogen adsorption/desorption peaks is difficult for low pH, these processes can be better separated for higher pH values, typically pH > 3. However, even for platinum single crystals, high pH solutions do not enable to sufficiently separate nickel from hydrogen phenomena. As a result, electrochemistry alone cannot yield important information about Ni-UPD, such as the formal partial charge number (valency of electrosorption) and the role of the sulphate or hydrogen sulphate anions.So, we decided to couple cyclic voltammetry to electrochemical quartz crystal microbalance (EQCM). EQCM measurements enable to decorrelate the simultaneous hydrogen and nickel adsorption/desorption peaks, which we could not attempt solely with electrochemistry. The coupling between gravimetric and electrochemical measurements allows us to detect the contribution of the anions and thus to isolate that of nickel: nickel coverage can then be determined. Nearly 4/5 NiUPD monolayer (θNi ≈ 0.8) over platinum is reached at nickel equilibrium potential for high pH solutions (5.5). The QCM and electrochemistry coupling further allows the determination of nickel formal partial charge number: ιNi,EQCM = 1.3 ± 0.13. Direct electrochemistry measurements (Swathirajan and Bruckenstein method) yield: ιNi,Pt(poly) = 1.5 ± 0.17. These two values are close, which validates the electrochemical method for the nickel/platinum system. In consequence, we used Swathirajan and Bruckenstein method for Pt(1 1 0)-(1 × 2) crystal and found: ιNi,Pt(1 1 0) ≈ 1.4 ± 0.1. Whatever the system (NiUPD/Pt(poly) or NiUPD/Pt(1 1 0)-(1 × 2)) or the experimental technique, nickel formal partial charge number is lower than nickel cation charge: ιNi < zNi = 2. In consequence, upon underpotential deposition on platinum surfaces, nickel cations discharge and then undergo additional charge exchange processes, such as anion (or water) adsorption, resulting in apparent partial nickel cation discharge. Moreover, NiUPD/Pt(1 1 0) surface displays high activity towards COad oxidation reaction. We explain such positive effect by the possible existence of a bifunctional mechanism in which oxygenated-species-covered NiUPD adatoms provide the oxygen atom to COad?Pt species, enabling its facile oxidation.  相似文献   

15.
Some ternary ferrites with molecular formula, CoFe2−xCrxO4 (0≤x≤1.0) have been synthesized at 70 °C by a precipitation method and were transformed into the film form at the pretreated Ni support (1.5×1.0 cm2) using an oxide-slurry painting technique. The study showed that Cr-substitution from 0.2 to 1.0 mol increased the electrocatalytic activity of the oxide towards the oxygen evolution reaction (OER), the optimum improvement in apparent electrocatalytic activity being with 0.8 mol Cr. At E=600 mV versus Hg/HgO in 1 M KOH (25 °C), the apparent oxygen evolution current density (ja) with the catalyst, CoFe1.2Cr0.8O4, was ∼80 times greater than that observed with the base oxide (i.e. CoFe2O4). The OER on Cr-substituted oxides showed two Tafel slopes, one (b=42±1 mV per decade) at low overpotential and the other (b=66±6 mV per decade) at higher potential. The reaction order with respect to OH concentration was ∼1.3±0.1 for each electrocatalyst. The thermodynamic parameters for the OER, namely, standard apparent electrochemical enthalpy of activation (ΔH°el#), standard enthalpy of activation (ΔH°#) and standard entropy of activation (ΔS°#) have also been determined. It was observed that values of the ΔH°el# and ΔH°# decreased with Cr-substitution in the CoFe2O4 lattice; the decrement, however, being the greatest with 0.8 mol Cr. The ΔS°# values were largely negative varying between ∼−61 and −126 J deg−1 mol−1.  相似文献   

16.
A. Evdou  L. Nalbandian 《Fuel》2010,89(6):1265-1273
This work reports on the preparation and characterization of perovskitic materials with the general formula La1−xSrxFeO3 (x = 0, 0.3, 0.7, 1) for application in a dense mixed conducting membrane reactor process for simultaneous production of synthesis gas and pure hydrogen. Thermogravimetric experiments indicated that the materials are able to loose and uptake reversibly oxygen from their lattice up to 0.2 oxygen atoms per “mole” for SrFeO3 with x = 1 at 1000 °C. The capability of the prepared powders to convert CH4 during the reduction step, in order to produce synthesis gas, as well as their capability to dissociate water during the oxidation step, in order to produce hydrogen were evaluated by pulse reaction experiments in a fixed bed pulse reactor. The high sintering temperatures (1100-1300 °C) required for the densification of the membrane materials result in decreased methane conversion and H2 yields during the reduction step compared to the corresponding values obtained with the perovskite powders calcined at 1000 °C. Addition of small quantities of NiO, by simple mechanical mixing, to the perovskites after their sintering at high temperatures, increases substantially both their methane decomposition reactivity, their selectivity towards CO and H2 and their water splitting activity. Maximum H2 yield during the reduction step is achieved with the La0.7Sr0.3FeO3 sample mixed with 5% NiO and is 80% of the theoretically expected H2, based on complete methane decomposition. In the oxidation - water splitting step, 912 μmol H2 per gr solid are produced with the La0.3Sr0.7FeO3 sample mixed with 5% NiO. The experimental results of this work can be equally well applied for the “chemical-looping reforming” process since they concern using the lattice oxygen of the perovskite oxides for methane partial oxidation to syngas, in the absence of molecular oxygen, and subsequent oxidation of the solid.  相似文献   

17.
A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg3(AlxFe1 − x)(CO3)0.5(OH)8 with 1 − x = 0.0, 0.1……1.0 was prepared by co-precipitation at 23 ± 2 °C and pH = 11.40 ± 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO32−, OH, and H2O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters ao and co from peak profile analysis. The parameter ao = bo was found to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H2O molecules and CO32− anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers.Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (xFe > 0.5) is attributed to possible fluorescence phenomena.Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of ΔG°f(hydrotalcite) = − 3773.3 ± 51.4 kJ/mol and ΔG°f(pyroaurite) = − 3294.5 ± 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.  相似文献   

18.
High voltage spinel oxides with composition LiMn2 − xMxO4 (M, a transition metal element) have remarkable properties such as high potential, high energy density and high rate capability. We believe that these positive electrode materials could replace the widespread commercial layered nickel cobalt oxides in some applications. The present assessment highlights electrochemical performance of optimized LiNi0.5Mn1.5O4 and substituted counterparts, all having a spinel structure (cubic close-packed oxygen array) similar to the relative LiMn2O4. To fully emphasize the benefit from high potential spinel oxides, tests have been performed versus lithium metal, Li4Ti5O12 and graphite, using various electrode loadings (0.3-4.5 mAh cm−2) and cycling rates (from C/20 to 60C rate). Steady capacity retention (130-140 mAh g−1 for nearly 500 cycles) and flat voltage (4.7 V vs. Li+/Li) have been obtained at C/5 rate at room temperature. Effect of cycling at high temperature has been shown to be less critical than for LiMn2O4. High voltage spinel oxides still sustain 100 mAh g−1 and over after 400 cycles at 55 °C at 1C rate. Rate capability is also excellent, with only 4% loss of capacity when comparing C/8 and 8C rates (thin electrodes).  相似文献   

19.
Electrodeposition of 0.5 μm thick CoxFe1−x (x = 0.33-0.87) films was carried out from a sulfate/chloride plating solution containing saccharin as an organic additive at constant current density and a controlled pH 2.3. The increase of Fe2+ concentrations in plating solution resulted in an increase of Fe-content and tensile stress in CoxFe1−x films, which is accompanied by a decrease of plating rate. Several possible origins for generation of tensile stress include the following: interfacial stress between CoFe films and Cu-substrate, crystal texture and grain size, coalescence and stress evolution during film growth, and hydrogen adsorption/desorption. The adsorption/desorption mechanism of hydrogen seems to be the most likely dominant stress mechanism. The relationship between increase of the tensile stress and decrease of plating rate was discussed.  相似文献   

20.
Activation of mesoporous carbon CMK-3 with CO2 for hydrogen storage was studied. Huge structure and texture changes emerged for the activated CMK-3 based on the characterization by using XRD, TEM and nitrogen adsorption at 77 K. The ordered mesoporous structure of CMK-3 gradually became disorder and its specific surface area and volume of pores especially micropores were enhanced remarkably. Hydrogen sorption measurement showed that the activation led to an obvious increase of the H2 sorption capacity of CMK-3. The maximum H2 uptake of 2.27 wt% at 77 K and 1 bar was obtained for the sample activated at 1223 K for 8 h. The small pores with the diameter smaller than 1 nm contributed greatly to the H2 uptake, and were confirmed more effective than other pores for hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号