首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
变质处理对M2高速钢组织和性能的影响   总被引:1,自引:0,他引:1  
用Y—K—Na对M2高速钢进行复合变质处理,研究了变质处理对M2高速钢组织和性能的影响。结果表明,M2铸造高速钢经Y-K-Na复合变质处理后,组织明显细化,共晶碳化物由网状分布变为块状和团球状,冲击韧性提高70.7%,耐磨性也明显提高,各项力学性能接近锻造M2高速钢的水平。  相似文献   

2.
离心铸造复合高速钢辊环的研究   总被引:7,自引:0,他引:7  
研究了离心复合铸造工艺和复合变质处理对高速钢辊环性能的影响,结果表明,选用变质高碳无钴高速钢作外层,用球铁作内层,选择合适的离心机转速、两种金属熔液浇注间隔时间和浇注温度,结合采用表面感应热处理工艺,可获得硬度高、均匀性好、内外层结合良好的高速钢复合辊环,用于工业生产其使用寿命比高铬铸铁辊环提高5 倍以上。  相似文献   

3.
采用不同剂量的钒铁对轧辊用高速钢进行变质处理,研究了钒变质对高速钢组织和性能的影响。结果表明,经过钒铁变质处理,高速钢组织中的碳化物网被打断,经过热处理后,碳化物进一步球化,分布更均匀。变质处理使高速钢的韧性得以明显提高。钒铁变质对组织和性能的改善作用在其加入量为1.0%附近时效果较好。  相似文献   

4.
通过调整高速钢成分和采用RE-Mg-Ti复合变质处理,可改变共晶碳化物的形态和分布,使高速钢冲击韧度大幅度提高,变质处理高碳高钒高速钢导板在使用中不粘钢、不断裂,耐磨性明显优于普通导板.  相似文献   

5.
变质处理M2铸造高速钢组织和性能研究   总被引:1,自引:1,他引:0  
崔亦国  张子义 《铸造技术》2004,25(11):845-847
用RE-Al-N对M2铸造高速钢进行变质处理,消除了钢中网状共晶碳化物,并细化了基体组织,还可减轻W、Mo元素偏析,在不降低M2高速钢硬度的情况下,韧性大幅度提高,经1180~1 200 ℃淬火,560 ℃三次回火后,硬度保持在65~66HRC,冲击韧度由10.6 J/cm2提高到21.3J/cm2.变质处理M2铸造高速钢具有优异的抗热疲劳性能和抗高温磨损性能.  相似文献   

6.
用RF-Mg-Ti对低碳铸造高速钢(6W6Mo5C44V)模具材料进行变质处理,消除了钢中网状共晶碳化物,细化了基体组织,减轻了W、Mo元素偏析,变质处理后,高速钢硬度,红硬性和强度变化不大,但断裂韧性(K1c)和疲劳裂纹扩展门槛值(ΔKth)有所提高,冲击韧性(ak)提高1倍以上,耐磨性也明显提高,各项性能指标达到了锻造高速钢水平,用RE-Mg-Ti变质处理低碳铸造高速钢,可以实现“以铸代锻”。  相似文献   

7.
符寒光  宋锦春 《钢管》2004,33(2):6-10
采用RE-Al-N对M2铸造高速钢进行变质处理,消除了钢中网状共晶碳化物,细化了基体组织,减轻了W、Mo元素的偏析,并在不降低M2高速钢硬度的条件下,使韧性大幅度提高。变质处理后的M2铸造高速钢具有优异的抗热疲劳性能和抗高温磨损性能,用于制造热轧无缝钢管均整机顶头,具有良好的使用效果。  相似文献   

8.
研究了热处理工艺对铸态和变质处理铸造高速钢组织与性能的影响。结果表明:变质处理可以使高速钢组织得到细化,同时改变钢中网状共晶碳化物的形貌,使高速钢的硬度和耐磨性得到提高;铸态高温加热、退火、淬火和回火等热处理工艺对铸造高速钢中碳化物的形貌影响不大。铸态和变质处理高速钢退火时,随着加热温度的升高,硬度逐渐升高;淬火+回火和铸态直接回火的高速钢随着回火温度的升高,硬度和耐磨性逐渐升高,在560℃三次回火时获得最高的硬度及室温耐磨性,且与锻造高速钢相当。  相似文献   

9.
刘刚  杨友 《热加工工艺》2006,35(10):47-50
研究了热处理工艺对铸态和变质处理铸造高速钢组织与性能的影响.结果表明:变质处理可以使高速钢组织得到细化,同时改变钢中网状共晶碳化物的形貌,使高速钢的硬度和耐磨性得到提高;铸态高温加热、退火、淬火和回火等热处理工艺对铸造高速钢中碳化物的形貌影响不大.铸态和变质处理高速钢退火时,随着加热温度的升高,硬度逐渐升高;淬火+回火和铸态直接回火的高速钢随着回火温度的升高,硬度和耐磨性逐渐升高,在560℃三次回火时获得最高的硬度及室温耐磨性,且与锻造高速钢相当.  相似文献   

10.
用RE Mg Ti对低碳铸造高速钢 (6W6Mo5Cr4V)模具进行变质处理 ,消除了钢中网状共晶碳化物 ,并细化了基体组织 ,还可减轻W、Mo元素偏析。变质处理后 ,高速钢硬度、红硬性和强度变化不大 ,断裂韧性 (K1c)和疲劳裂纹扩展门槛值 (△Kth)有所提高 ,冲击韧性 (αk)提高了 1倍以上 ,耐磨性也明显提高。各项性能指标达到了锻造高速钢水平 ,用RE Mg Ti变质处理低碳铸造高速钢 ,可以实现“以铸代锻”。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号