首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An underfill encapsulant was used to fill the gap between the chip and the substrate around the solder joints to improve the long-term reliability of the flip-chip interconnecting system. The underfill encapsulant was filled by the capillary effect. In this study, experiments were designed to investigate the effects of bump pitch and the edge detour flow on the underfill encapsulation. The bump array was patterned on a glass plate using the lithography technology. This patterned glass plate was used to simulate a flip-chip with solder bumps. The patterned glass was bounded to a substrate to form a simulated flip-chip system. With the lithography technology, it is easy to construct the test samples for underfill flow experiments with different configuration of solder bumps. It was observed that the filling flow was affected by the bump pitch. The edge detour flow depends mainly on the arrangement of the underfill dispensing process.  相似文献   

2.
Wafer-level flip chips provide an innovative solution in establishing flip chip as a standard surface mount process. In this paper, the wetting of solder bumps within confining underfill during the reflow of a wafer-level flip chip assembly is addressed. For real time monitoring of an assembly during the reflow process, a system using a high-speed camera is utilized. The collapse of solder bumps on the chip in the vertical direction is found to be a prerequisite of solder wetting. Underfill voids and outgassing are found to cause chip drift and tilt during the reflow process. In addition, symmetry of the underfill flow and fillet formation is identified as a critical factor in maintaining chip to substrate alignment. During solder wetting of the metallization pads on the substrate, the underfill needs to maintain a low viscosity. With the selection of a thermally stable underfill and corresponding process development, wafer-level flip chip assemblies with good solder interconnects are demonstrated  相似文献   

3.
Underfill encapsulant is the material used in flip-chip devices that fills the gap between the integrated circuit (IC) chip and the organic board, and encapsulates the solder interconnects. This underfill material can dramatically enhance the reliability of flip-chip devices as compared to nonunderfilled devices. Current underfill encapsulants generally consist of epoxy resin, anhydride hardener, catalyst, silica filler, and other additives to enhance the adhesion, flow, etc. Catalyst determines underfill properties including pot-life, cure speed, and cure temperature. However, long pot-life and fast cure at relatively low temperature (~150°C) are desirable, as such, it requires a room temperature latent catalyst which would be able to catalyze the epoxy curing efficiently at desirable temperature. Currently, the pot-life of commercial underfills at room temperature is normally less than one day. The underfills have to be stored in the freezer at -40°C and in the dry ice for shipping. The objective of this work was to test various catalyst systems that have the potential to enhance the pot-life of the underfill without adversely affecting its curing. The pot-lives of the underfill with various catalysts were obtained from their viscosity versus time relationships, which were established by measuring the viscosities of the underfill with these catalysts periodically using a stress-controlled rheometer. The curing of the underfills was studied using a differential scanning calorimetry (DSC). The pot-life and curing data of the underfill pre-mixed with each of these catalysts are presented in this paper  相似文献   

4.
No-flow underfill process in flip-chip assembly has become a promising technology toward a smaller, faster and more cost-efficient packaging technology. The current available no-flow underfill materials are mainly designed for eutectic tin-lead solders. With the advance of lead-free interconnection due to the environmental concerns, a new no-flow underfill chemistry needs to be developed for lead-free solder bumped flip-chip applications. Many epoxy resin/hexahydro-4-methyl phthalic anhydride/metal acetylacetonate material systems have been screened in terms of their curing behavior. Some potential base formulations with curing peak temperatures higher than 200°C (based on differential scanning calorimetry at a heating rate of 5°C/min) are selected for further study. The proper fluxing agents are developed and the effects of fluxing agents on the curing behavior and cured material properties of the potential base formulations are studied using differential scanning calorimetry, thermomechanical analysis, dynamic-mechanical analysis, thermogravimetric analysis, and rheometer. Fluxing capability of the developed no-flow formulations is evaluated using the wetting test of lead-free solder balls on a copper board. The developed no-flow underfill formulations show sufficient fluxing capability and good potential for lead-free solder bumped flip-chip applications  相似文献   

5.
Flow time is a key material property for underfill materials in flip-chip applications. In this paper, we will discuss how to use flow time testing for underfill flow evaluation and material screening. The flow time of several underfills was measured at elevated temperatures using test pieces made from glass microscope slides. The material properties impacting underfill flow, such as viscosity, contact angle, and surface tension, were also experimentally measured and used to calculate estimated flow times using the Washburn equation. Empirical and calculated flow times were compared. The effects of channel width and flow distance on flow time were also studied. Additionally, the effect of a tilted stage on flow time, epoxy tongue, and void formation was evaluated.  相似文献   

6.
The flip-chip technique of integrated circuit (IC) chip interconnection is the emerging technology for high performance, high input/output (I/O) IC devices. Due to the coefficient of thermal expansion mismatch between the silicon IC (CTE=2.5 ppm/°C) and the low cost organic substrate such as FR-4 printed wiring board (CTE=18-22 ppm/°C), the flip-chip solder joints experience high shear stresses during temperature cycling. Underfill encapsulant is used to couple the bilayer structure and is critical to the reliability of the flip-chip solder interconnects. Current underfill encapsulants are filled epoxy-based materials that are normally not reworkable after curing. This forms an obstacle to flip-chip on board (FCOB) technology development, where unknown bad dies (UBD) are still a concern. Approaches have been taken to develop the thermally reworkable underfill materials in order to address the nonreworkability problem of the commercial underfill encapsulants. These approaches include introduction of thermally cleavable blocks into epoxides and addition of additives to the epoxies. In the first approach, five diepoxides containing thermally cleavable blocks were synthesized and characterized. These diepoxides were mixed with hardener and catalyst. Then the mixture properties of Tg, onset decomposition temperature, storage modulus, CTE, and viscosity were studied and compared with those of the standard formulation based on the commercial epoxy resin ERL-4221E. These mixtures all decomposed at lower temperature than the standard formulation. Moreover, one mixture, Epoxy5, showed acceptable Tg, low viscosity, and fairly good adhesion. In the second approach, two additives were discovered that provide die removal capability to the epoxy formulation without interfering with the epoxy cure or properties of the cured epoxy system. Furthermore, the combination of the two approaches showed positive results  相似文献   

7.
Underfill process is a very important step in the flip-chip packaging because of its great impact on the reliability of electronic devices. In the control of the underfill dispensing in flip-chip packaging, an analytical model for the underfill flow behavior is required to perform the control action. Traditionally, the Washburn model is used for predicting the viscous flow behavior in the flip-chip underfill process driven by capillary forces. Unfortunately, some studies in the literature have shown that the model does not match the measured results well due to the neglect of the characteristics such as solder bump resistance and non-Newtonian behavior of underfills. Although some underfill flow models have been developed for considering these characteristics, there is no sufficient account for such a mismatch from the literature. In this article, we present an experimental investigation aimed to understand the possible causes responsible for the observed mismatch with the Washburn model. The experimental investigation confirmed that the underfill fluid used in flip-chip packaging shows a complex non-Newtonian behavior and that the Washburn model is, indeed, only applicable to the Newtonian fluid in this setting. Another contribution of the work reported in this article is the provision of measured data on a test bed which was built upon using the off-the-shelf components; as such the data can be used by other researchers to validate their theoretical findings.  相似文献   

8.
A chemorheological analysis of a no‐flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of 86 °C) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no‐flow underfill with a processing temperature of 130 °C was successfully completed using phenomenological models such as autocatalytic and nth‐order models. Temperature‐dependent kinetic parameters were identified within a temperature range of 125 °C to 135 °C. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no‐flow underfill can be adopted in arbitrary processing applications.  相似文献   

9.
Lead-free solder reflow process has presented challenges to no-flow underfill material and assembly. The currently available no-flow underfill materials are mainly designed for eutectic Sn-Pb solders. This paper presents the assembly of lead-free bumped flip-chip with developed no-flow underfill materials. Epoxy resin/HMPA/metal AcAc/Flux G system is developed as no-flow underfills for Sn/Ag/Cu alloy bumped flip-chips. The solder wetting test is conducted to demonstrate the fluxing capability of the underfills for lead-free solders. A 100% solder joint yield has been achieved using Sn/Ag/Cu bumped flip-chips in a no-flow process. A scanning acoustic microscope is used to observe the underfill voiding. The out-gassing of HMPA at high curing temperatures causes severe voiding inside the package. A differential scanning calorimeter (DSC) used to study the curing degree of the underfill after reflow with or without post-cure. The post-curing profiles indicate that the out-gassing of HMPA would destroy the stoichiometric balance between the epoxy and hardener, and result in a need for high temperature post-cure. The material properties of the underfills are characterized and the influence of underfill out-gassing on the assembly and material properties is investigated. The impact of lead-free reflow on the material design and process conditions of no-flow underfill is discussed.  相似文献   

10.
No-flow underfill has greatly improved the production efficiency of flip-chip process. Due to its unique characteristics, including reaction latency, curing under solder reflow conditions and the desire for no post-cure, there is a need for a fundamental understanding of the curing process of no-flow underfill. Starting with a promising no-flow underfill formulation, this paper seeks to develop a systematic methodology to study and model the curing behavior of this underfill. A differential scanning calorimeter (DSC) is used to characterize the heat flow during curing under isothermal and temperature ramp conditions. A modified autocatalytic model is developed with temperature-dependent parameters. The degree of cure (DOC) is calculated; compared with DSC experiments, the model gives a good prediction of DOC under different curing conditions. The temperature of the printed wiring board (PWB) during solder reflow is measured using thermocouples and the evolution of DOC of the no-flow underfill during the reflow process is calculated. A stress rheometer is used to study the gelation of the underfill at different heating rates. Results show that at high curing temperature, the underfill gels at a lower DOC. Based on the kinetic model and the gelation study, the solder wetting behavior during the eutectic SnPb and lead-free SnAgCu reflow processes is predicted and confirmed by the solder wetting tests.  相似文献   

11.
Flip chip on organic substrate has relied on underfill to redistribute the thermomechanical stress and to enhance the solder joint reliability. However, the conventional flip-chip underfill process involves multiple process steps and has become the bottleneck of the flip-chip process. The no-flow underfill is invented to simplify the flip-chip underfill process and to reduce the packaging cost. The no-flow underfill process requires the underfill to possess high curing latency to avoid gelation before solder reflow so to ensure the solder interconnect. Therefore, the temperature distribution of a no-flow flip-chip package during the solder reflow process is important for high assembly yield. This paper uses the finite-element method (FEM) to model the temperature distribution of a flip-chip no-flow underfill package during the solder reflow process. The kinetics of underfill curing is established using an autocatalytic reaction model obtained by DSC studies. Two approaches are developed in order to incorporate the curing kinetics of the underfill into the FEM model using iteration and a loop program. The temperature distribution across the package and across the underfill layer is studied. The effect of the presence of the underfill fillet and the influence of the chip dimension on the temperature difference in the underfill layer is discussed. The influence of the underfill curing kinetics on the modeling results is also evaluated.  相似文献   

12.
As a concept to achieve high throughput low cost flip-chip assembly, a process development activity is underway, implementing next generation flip-chip processing based on large area underfill printing/dispensing, IC placement, and simultaneous solder interconnect reflow and underfill cure. The self-alignment of micro-BGA (ball grid array, BGA) package using flux and two types of no-flow underfill is discussed in this paper. A “rapid ramp” temperature profile is optimized for reflow of micro-BGA using no-flow underfill for self-aligning and soldering. The effect of bonding force on the self-alignment is also described. A SOFTEX real time X-ray inspection system was used to inspect samples to ensure the correct misalignment before reflow, and determine the residual displacement of solder joints after reflow. Cross-sections of the micro-BGA samples are taken using scanning electronic microscope. Our experimental results show that the self-alignment of micro-BGA using flux is very good even though the initial misalignment was greater than 50% from the pad center. When using no-flow underfill, the self-alignment is inferior to that of using flux. However, for a misalignment of no larger than 25% from the pad center, the package is also able to self-align with S1 no-flow underfill. However, when the misalignment is 37.5–50% from the pad center, there are 10–14% residual displacement after reflow. The reason is the underfill resistant force inhibiting the self-alignment of the package due to rapid increment of underfill viscosity during reflow. The self-alignment of micro-BGA package using no-flow underfill allows only <25% misalignment prior to the soldering. During assembling, although the bonding force does not influence on the self-alignment of no-flow underfill, a threshold bonding force is necessary to make all solder balls contact with PCB pads, for good soldering. The no-flow underfill is necessary to modify the fluxing/curing chemistry for overcoming the effect of tin metal salt produced during soldering on underfill curing, and for maintaining the low viscosity during soldering to help self-alignment.  相似文献   

13.
In the assembly process for the conventional capillary underfill (CUF) flip-chip ball grid array (FCBGA) packaging the underfill dispensing creates bottleneck. The material property of the underfill, the dispensing pattern and the curing profile all have a significant impact on the flip-chip packaging reliability. Due to the demand for high performance in the CPU, graphics and communication market, the large die size with more integrated functions using the low-K chip must meet the reliability criteria and the high thermal dissipation. In addition, the coplanarity of the flip-chip package has become a major challenge for large die packaging. This work investigates the impact of the CUF and the novel molded underfill (MUF) processes on solder bumps, low-K chip and solder ball stress, packaging coplanarity and reliability. Compared to the conventional CUF FCBGA, the proposed MUF FCBGA packaging provides superior solder bump protection, packaging coplanarity and reliability. This strong solder bump protection and high packaging reliability is due to the low coefficient of thermal expansion and high modulus of the molding compound. According to the simulation results, the maximum stress of the solder bumps, chip and packaging coplanarity of the MUF FCBGA shows a remarkable improvement over the CUF FCBGA, by 58.3%, 8.4%, and 41.8% (66 $mu {rm m}$), respectively. The results of the present study indicates that the MUF packaging is adequate for large die sizes and large packaging sizes, especially for the low-K chip and all kinds of solder bump compositions such as eutectic tin-lead, high lead, and lead free bumps.   相似文献   

14.
This article describes an analytical model for the prediction of the underfill flow characteristics in a flip-chip package driven by capillary action. In this model, we consider non-Newtonian fluid properties of the encapsulant as opposed to most other studies where Newtonian fluid properties were assumed for the underfill flow. The power-law constitutive equation was applied in our study. The simulation based on this model agreed well with the measurement obtained from the experiments available in literature. It was further shown that this model performs better than the Washburn model traditionally used for the prediction of underfill flow characteristics in the flip-chip packaging. Based on this model, the effects of the solder bump pattern (including bump pitch, solder bump diameter, and gap height) on the process variables (i.e., flow front and filling time) were studied, which facilitated both the package design and the process optimization.  相似文献   

15.
An underfill encapsulant was used to fill the gap between the chip and substrate around solder joints to improve the long-term reliability of flip chip interconnect systems. The underfill encapsulant was filled by the capillary effect. In this study, the filling time and pattern of the underfill flow in the process with different bumping pitch, bump diameter, and gap size were investigated. A modified Hele-Shaw flow model, that considered the flow resistance in both the thickness direction and the restrictions between solder bumps, was used. This model estimated the flow resistance induced by the chip and substrate as well as the solder bumps, and provided a reasonable flow front prediction. A modified model that considered the effect of fine pitch solder bumps was also proposed to estimate the capillary force in fine pitch arrangements. It was found that, on a full array solder bump pattern, the filling flow was actually faster for fine pitch bumps in some arrangements. The filling time of the underfill process depends on the parameters of bumping pitch, bump diameter, and gap size. A proposed capillary force parameter can provide information on bump pattern design for facilitating the underfilling process.  相似文献   

16.
下填充流动是确保倒装芯片可靠性的重要封装工艺,其流场和流动过程具有明显的二维特征,通过降维得到的二维化数值分析新方法能高效地模拟下填充流动过程.针对一种焊球非均匀、非满布的典型倒装芯片,用该数值分析方法模拟了单边下填充流动的过程,并用实验对模拟结果进行了检验.实验采用了可视化的下填充流动装置,倒装芯片试样采用硅-玻璃键合(SOG)方法制作.将数值模拟结果与实验结果比较发现,无论是流动速度还是流动前沿的形态,两者均呈现出较高的吻合度.这表明:针对下填充流动的二维化数值分析方法兼具高效性和准确性,具有较高的应用价值.  相似文献   

17.
The no-flow underfill has been invented and practiced in the industry for a few years. However, due to the interfering of silica fillers with solder joint formation, most no-flow underfills are not filled with silica fillers and hence have a high coefficient of thermal expansion (CTE), which is undesirable for high reliability. In a novel invention, a double-layer no-flow underfill is implemented to the flip-chip process and allows fillers to be incorporated into the no-flow underfill. The effects of bottom layer underfill thickness, bottom layer underfill viscosity, and reflow profile on the solder wetting properties are investigated in a design of experiment (DOE) using quartz chips. It is found that the thickness and viscosity of the bottom layer underfill are essential to the wetting of the solder bumps. Chip scale package (CSP) components are assembled using the double-layer no-flow underfill process. Silica fillers of different sizes and weight percentages are incorporated into the upper layer underfill. With a high viscosity bottom layer underfill, up to 40 wt% fillers can be added into the upper layer underfill and do not interfere with solder joint formation.  相似文献   

18.
Most no-flow underfill materials are based on epoxy/anhydride chemistry. Due to the sensitizing nature, the use of anhydride is limited and there is a need for a no-flow underfill using nonanhydride curing system. This paper presents the development of novel no-flow underfill materials-based on epoxy/phenolic resin system. Epoxy and phenolic resins of different structures are evaluated in terms of their curing behavior, thermo-mechanical properties, viscosity, adhesion toward passivation, moisture absorption and the reliability in flip-chip underfill package. The influence of chemical structure and the crosslinking density of the resin on the material properties is investigated. The assembly with nonanhydride underfill shows high reliability from the thermal shock test. Solder wetting test has confirmed the sufficient fluxing capability of phenolic resins. Results show that epoxy/phenolic system has great potential for an environmentally friendly and highly reliable no-flow underfill  相似文献   

19.
A computational survey was performed to evaluate the effect of volume and material properties on a concurrent underfilling and solder reflow manufacturing technique applied to flip-chip technology. Fillet geometry in addition to collapsed solder ball geometry and forces during solder reflow in the presence of liquefied underfill are reported. Targeted material properties included surface tension, wetting angles, and process parameters such as underfill volume. A regression model is presented representing over 1000 case studies completed using surface evolver. Also, a multiple ball model was developed to study the solder ball array behavior. Modeling results are presented. Application of this model for wafer applied coating underfill thickness prediction was also studied including the fillet forces added to a multiple-ball-model. Behavior and force studies combining all these effects were performed and are presented. Finally, a more realistic arrangement consisting of circular and square solder pad geometries combined is modeled for a single ball. The models results are expanded to include a multiball model employing a commonly used regression method. Solder joints were cross-sectioned and measured after reflow in the presence of a fluxing underfill for comparison to model predictions. The experimental results agree within 1.5%.  相似文献   

20.
As one of the key requirements of the no-flow underfill materials for flip-chip applications, a proper self-fluxing agent must be incorporated in the developed no-flow underfill materials to provide proper fluxing activity during the simultaneous solder reflow and underfill material curing. However, most fluxing agents have some adverse effects on the no-flow underfill material properties and assembly reliability. In this paper, we have extensively investigated the effects of the concentration of the selected fluxing agent on the material properties, interconnect integrity and assembly reliability. Through this work, an optimum concentration window of the fluxing agent is obtained and a routine procedure of evaluating fluxing agents is established  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号