首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research presents a fabrication method of vertically aligned nanowires on substrates using lithography-assisted template bonding (LATB) towards developing highly efficient electrodes for biomedical applications at low cost. A polycarbonate template containing cylindrical nanopores is attached to a substrate and the nanopores are selectively opened with a modified lithography process. Vertically aligned nanowires are grown by electrochemical deposition through these open pores on polyimide film and silicon substrates. The process of opening the nanopores is optimized to yield uniform growth of nanowires. The morphological, crystalline, and electrochemical properties of the resulting vertically aligned nanowires are discussed using scanning electron microscopy (SEM), x-ray diffraction (XRD), and electrochemical analysis tools. The potential application of this simple and inexpensive fabrication technology is discussed in the development of neural probe electrodes.  相似文献   

2.
In this paper, we review the preparation of Fe-group metal oxide nanostructures by the thermal oxidation method developed in our lab. By this method, we have prepared several kinds of nanostructures, including nanowires and nanoleaves. The magnetic properties of these nanostructures have also been studied. By carefully controlling the reacting time, temperature, and humidity, we have prepared alpha-Fe2O3, gamma-Fe2O3, Fe3O4, and Co3O4 nanowires and alpha-Fe2O3 nanoleaves by heating the substrates in proper atmosphere. The alpha-Fe2O3 and Co3O4 nanowires are produced by directly oxygenating pure metal at 550 to approximately 650 degrees C and 480-520 degrees C, separately. The gamma-Fe2O3 and Fe3O4 nanowires are produced by reducing as-prepared alpha-Fe2O3 nanowires in a mixture of N2 and H2. The nanowires are about 10-20 microm, with diameter of about 20 to approximately 100 nm. Most of the nanowire arrays are grown vertically from the surface of the substrate at a high surface density (10(8)-10(9) cm(-2)). Compared with the nanowires prepared by hydrothermal process and template method, Most of our nanowires are structurally uniform and single crystallites. The magnetic properties of these nanostructures are also studied, and demonstrate some novel properties.  相似文献   

3.
Hong YJ  Lee WH  Wu Y  Ruoff RS  Fukui T 《Nano letters》2012,12(3):1431-1436
Semiconductor nanowire arrays integrated vertically on graphene films offer significant advantages for many sophisticated device applications. We report on van der Waals (VDW) epitaxy of InAs nanowires vertically aligned on graphene substrates using metal-organic chemical vapor deposition. The strong correlation between the growth direction of InAs nanowires and surface roughness of graphene substrates was investigated using various graphene films with different numbers of stacked layers. Notably, vertically well-aligned InAs nanowire arrays were obtained easily on single-layer graphene substrates with sufficiently strong VDW attraction. This study presents a considerable advance toward the VDW heteroepitaxy of inorganic nanostructures on chemical vapor-deposited large-area graphenes. More importantly, this work demonstrates the thinnest epitaxial substrate material that yields vertical nanowire arrays by the VDW epitaxy method.  相似文献   

4.
Wan Q  Dattoli EN  Fung WY  Guo W  Chen Y  Pan X  Lu W 《Nano letters》2006,6(12):2909-2915
We report the growth and characterization of single-crystalline Sn-doped In2O3 (ITO) and Mo-doped In2O3 (IMO) nanowires. Epitaxial growth of vertically aligned ITO nanowire arrays was achieved on ITO/yttria-stabilized zirconia (YSZ) substrates. Optical transmittance and electrical transport measurements show that these nanowires are high-performance transparent metallic conductors with transmittance of approximately 85% in the visible range, resistivities as low as 6.29 x 10(-5) Omega x cm and failure-current densities as high as 3.1 x 10(7) A/cm2. Such nanowires will be suitable in a wide range of applications including organic light-emitting devices, solar cells, and field emitters. In addition, we demonstrate the growth of branched nanowire structures in which semiconducting In2O3 nanowire arrays with variable densities were grown epitaxially on metallic ITO nanowire backbones.  相似文献   

5.
Controlling the spatial organization of objects at the nanoscale is a key challenge in enabling their technological application. Biomolecular assemblies are attractive nanostructures owing to their biocompatibility, straightforward chemical modifiability, inherent molecular recognition properties and their availability for bottom-up fabrication. Aromatic peptide nanotubes are self-assembled nanostructures with unique physical and chemical stability and remarkable mechanical rigidity. Their application in the fabrication of metallic nanowires and in the improvement of the sensitivity of electrochemical biosensors have already been demonstrated. Here we show the formation of a vertically aligned nanoforest by axial unidirectional growth of a dense array of these peptide tubes. We also achieved horizontal alignment of the tubes through noncovalent coating of the tubes with a ferrofluid and the application of an external magnetic field. Taken together, our results demonstrate the ability to form a two-dimensional dense array of nanotube assemblies with either vertical or horizontal patterns.  相似文献   

6.
The development of a facile method for fabricating one-dimensional, precisely positioned nanostructures over large areas offers exciting opportunities in fundamental research and innovative applications. Large-scale nanofabrication methods have been restricted in accessibility due to their complexity and cost. Likewise, bottom-up synthesis of nanowires has been limited in methods to assemble these structures at precisely defined locations. Nanomaterials such as PbZr(x)Ti(1-x)O(3) (PZT) nanowires (NWs)--which may be useful for nonvolatile memory storage (FeRAM), nanoactuation, and nanoscale power generation--are difficult to synthesize without suffering from polycrystallinity or poor stoichiometric control. Here, we report a novel fabrication method which requires only low-resolution photolithography and electrochemical etching to generate ultrasmooth NWs over wafer scales. These nanostructures are subsequently used as patterning templates to generate PZT nanowires with the highest reported piezoelectric performance (d(eff) ~ 145 pm/V). The combined large-scale nanopatterning with hierarchical assembly of functional nanomaterials could yield breakthroughs in areas ranging from nanodevice arrays to nanodevice powering.  相似文献   

7.
In this paper, the fabrication and characterization of a heterojunction solar cell based on p-Cu2O/n-ZnO nanowires on ITO glass are presented. ZnO aligned nanocrystal seed layer is firstly prepared by RF magnetron sputtering technique, and then vertical ZnO nanowire arrays with an acicular crystal structure are obtained by using a chemical bath deposition processing. The results indicate that the ZnO nanowires with a diameter of about 50 nm and 500 nm in length can be easily obtained. The absorption and transmittance of the ZnO nanowires are studied. It is also noted that the Cu2O can fill well into the space between ZnO nanowires by an electrodeposition process. Furthermore, the effect of the Cu2O orientation on the cell performance is also presented.  相似文献   

8.
Madaria AR  Yao M  Chi C  Huang N  Lin C  Li R  Povinelli ML  Dapkus PD  Zhou C 《Nano letters》2012,12(6):2839-2845
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.  相似文献   

9.
Wu H  Yang Y  Oh E  Lai F  Yu D 《Nanotechnology》2012,23(26):265602
We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3?months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.  相似文献   

10.
Zhao Q  Wen G  Liu Z  Fan Y  Zou G  Li L  Zheng R  Ringer SP  Mao HK 《Nanotechnology》2011,22(12):125603
High-density, vertically aligned CrO(2) nanowire arrays were obtained via atmospheric-pressure CVD assisted by AAO templates. The CrO(2) nanowire arrays show remarkably enhanced coercivity compared with CrO(2) films or bulk. It was found that the length of the nanowires is greatly influenced by the pore diameter of the AAO template used. The growth mechanism and the pore size dependence of the CrO(2) nanowire arrays are discussed. The present method provides a useful approach for the synthesis of CrO(2) nanowire arrays. Such highly ordered nanowire arrays within an AAO template may have important applications in ultrahigh-density perpendicular magnetic recording devices and the mass production of spintronic nanodevices.  相似文献   

11.
Nitrogen‐doped and nitrogen and oxygen codoped carbon nanobelts (CNBs) (denoted as N–CNBs and N–O–CNBs, respectively) are respectively obtained by pyrolyzing the self‐aligned polypyrrole (PPy) NBs and Se@poly(2‐methoxy‐5‐nitroaniline) core@shell nanowires. Particularly, the uniform size, unique nanostructure, and well‐defined edges of the PPy NBs result in the uniform size of the doped CNBs with an extraordinarily high N doping level (≈16 at%), especially the very large concentrations of the redox active pyridinic (9 at%) and pyrrolic N (3.5 at%) species. Furthermore, the precursors in highly self‐aligned, dense arrays give rise to a very high packing density for the N–CNBs and N–O–CNBs. These incomparable features provide not only appropriate pathways for the introduction of pseudocapacitance via rapid Faradaic reactions and enhancement of volumetric capacitance but also structural design and synthesis approach to new types of nanostructured carbon. Notably, the N–CNBs obtained at the pyrolysis temperature of 800 °C (N–CNB8) in symmetric electrochemical cells deliver a specific capacitance of 458 F g?1 and ultrahigh volumetric capacitance of 645 F cm?3 in aqueous solution, which are among the best performance ever reported for carbon‐based supercapacitive materials.  相似文献   

12.
This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction arrays. In this article, we present an efiective method to fabricate Bi nanowire arrays with difierent diameters in anodic alumina membrane (AAM) with a single pore size by the pulsed electrodeposition. The fabrication of the high-filling and ordered Bi1-xSbx and Bi2Te3 single crystalline nanowire arrays, the Bi nanowire metalsemiconductor homojunction and Bi-Sb nanowire metal-semiconductor heterojunction arrays by the pulsed electrodeposition are reported. The factors controlling the composition, diameter, growth rate and orientation of the nanowires are analyzed, and the growth mechanism of the nanowire and nanojunction arrays are discussed together with the study of the electrical and thermal properties of Bi-based nanowires and nanojunctions.Finally, this review is concluded with some perspectives on the research directions and focuses in the Bi-based nanomaterials fields.  相似文献   

13.
In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by the peptide nanostructures; furthermore we studied the properties of PNWs by investigating their influence on the electrochemical behavior of gold electrodes. The PNWs were functionalized with polypyrrole (PPy) by chemical polymerization, therefore creating conducting peptide/polymer nanowire structures vertically attached to a metal electrode. The electroactivity of such structures was characterized by cyclic voltammetry. The PNW/PPy modified electrodes were finally used as amperometric dopamine sensors, yielding a detection limit of 3,1 microM.  相似文献   

14.
Cu2S nanostructures were fabricated by polyol method and then characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy (TEM) and high resolution TEM. The morphologically different Cu2S nanostructures such as vertically nanorod arrays, nanoflowers assembled by nanorod arrays, nanoparticles and nanowires, can be successfully synthesized under different experimental conditions. The growth mechanism for the different nanostructures is proposed. The photocatalytic activity of the prepared samples was evaluated based on the degradation of organic pollutant, active brilliant red X-3B (X-3B), under visible light. Among the Cu2S nanostructures, self-assembled nanoflowers have the highest photocatalytic activity. In addition, the prepared Cu2S nanostructures are found to be able to decolorize X-3B with iron ions for the formation of Fenton reagent. This study provides a more choice to prepare self-assembled nanostructures for the application of environmental pollution control.  相似文献   

15.
Hwang YJ  Wu CH  Hahn C  Jeong HE  Yang P 《Nano letters》2012,12(3):1678-1682
Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting.  相似文献   

16.
Because of their importance in fundamental research and possible applications in nanotechnology and nanoelectronics, semiconductor nanowires have attracted much interest. In addition to the growth itself, the control of the size and location is an essential problem. Here we show the growth of ordered arrays of vertically aligned silicon nanowires by molecular beam epitaxy using prepatterned arrays of gold droplets on Si(111) substrates. The ordered arrays of gold particles were produced by nanosphere lithography.  相似文献   

17.
On p. 2593, Ji and co‐workers report on a novel fabrication technique for ideally ordered lateral nanowire and nanoring arrays based on interference lithography and electrochemical deposition. This approach allows the fabrication of metallic and semiconductor nanowire or nanoring arrays over wafer‐scale areas and provides flexible control over shape, arrangement, and thickness of the nanowires and nanorings. The cover shows templated electrodeposited elliptical nanoring arrays and a cross‐section of electrodeposited nanowires.  相似文献   

18.
A facile and rapid electrodeposition route was developed to controllably synthesize well-aligned ZnO nanorod arrays on diverse substrates, such as seed-layer pre-formed, pristine indium tin oxide (ITO) and Si, using Zn(NO3)2·6H2O and hexamethylenetetramine (HMT) as the precursors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicated that seed-layer pre-modified of ZnO nanorod arrays (ZNRs) possessed single crystalline, a wurtzite crystal structure with preferential growth orientation along [0001] direction. The ZNRs on pre-modified ZnO seed-layer (ZSL) had diameters of 30-50 nm, and aligned vertically to the substrates. ZNRs on ZSL/ITO substrate exhibited a high transmittance (above 80%) in visible wavelength range and the red-shift of band gap energy. An electrochemical reaction model was proposed to explain the growth process of ZnO nanorods. Importantly, the rapid synthesis of ZNRs provided the feasibility of preparation of SERS (surface enhanced Raman scattering) nanocomposite within shorter time by a subsequent electrochemical etching.  相似文献   

19.
Bismuth oxycholoride (BiOCl) nano/microstructures, including flake and nanowire arrays, were successfully synthesized on Anodic Aluminum Oxide (AAO) templates via sol-gel combined with the vacuum air-extraction method. The flakes are almost vertically aligned on the surface, but nanowires at a lower sol concentration are aligned along the channels. A possible formation mechanism is proposed. Furthermore, the photocatalytic activity of the BiOCl nano/microstructures is investigated by photocatalytic decomposition of Rhodamine B (Rh B) dye under UV-Visible light irradiation. Compared with the BiOCl flake-like film on the glass substrate, where the flakes are horizontally oriented on the surface, the vertically aligned flake and nanowire arrays on AAO templates, have higher photocatalytic efficiency.  相似文献   

20.
A straightforward procedure is described for preparation of arrays of microdisk electrodes comprising bundles of vertically aligned carbon nanotubes (VACNTs). The arrays are fabricated by thermal chemical vapor deposition synthesis directly on a planar carbon film support. Use of standard micro- and nanolithography procedures for patterning the bilayer catalyst spots enables arrays to be grown with controlled electrode diameters and spacings. The minimum accessible VACNT bundle diameter, and hence microelectrode diameter, is 2 microm. After insulating the arrays with SU-8 epoxy and exposing the VACNT ends by polishing or treating with O2 plasma, the microdisk electrodes exhibit attractive electrochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号