共查询到20条相似文献,搜索用时 93 毫秒
1.
目的探究初始表面粗糙度大小对激光沟槽织构化表面摩擦性能的影响规律。方法采用脉冲光纤激光器在不同粗糙度的45#钢试样表面制备具有不同深度、规则排列的沟槽织构,利用摩擦磨损试验机进行销-盘式往复摩擦试验,研究初始表面粗糙度对沟槽织构化表面摩擦系数的影响规律,以及不同初始表面粗糙度条件下,激光沟槽织构化表面的摩擦学行为。结果沟槽织构能够有效降低表面的摩擦系数,初始表面粗糙度、载荷和速度的大小对沟槽织构的润滑减摩性能有较大影响。在较低的载荷下,沟槽织构能有效提高表面的流体动压润滑效应;在较高的载荷下,沟槽织构能够有效改善表面的边界润滑性能。存在最优初始表面粗糙度,使得摩擦系数达到最小,初始表面粗糙度最优值的大小应根据载荷和速度大小来确定。结论根据摩擦副表面的载荷和速度工况条件,合理优化初始表面粗糙度能使沟槽织构获得较为理想的润滑减摩效果。 相似文献
2.
为了探究表面织构对动压滑动轴承摩擦学性能的影响,基于自研的摩擦磨损试验机对 BY-BDB 型三维光纤激光织构机加工的表面织构动压滑动轴承摩擦学性能影响进行研究。 通过三维形貌仪、扫描电子显微镜( SEM)以及能谱仪(EDS)对摩擦磨损试验后的微观形貌和摩擦磨损状况进行分析。 研究表明:激光加工会引起表层出现硬化现象且 C 与 O 元素的含量分别增加了 31. 1%与 7. 9%;不同织构参数(面积率 Sp 与深径比 β)与工况(载荷与转速)下的磨损量与摩擦因数呈现先减小后增加的趋势且表面织构对动压滑动轴承的耐摩性能提高了 23%以上。 此外,研究还发现动压滑动轴承摩擦磨损机理是磨粒切削与粘着磨损,而表面织构的减摩机理是能够提高表面耐磨性以及储存磨粒和形成二次动压润滑。 相似文献
3.
采用乳液法在水-甲苯体系中原位合成了含硫、氮有机物修饰的铜纳米微粒,用透射电镜(TEM),红外光谱(FTIR)表征了纳米颗粒的尺寸、形貌和结构,在四球摩擦磨损试验机上考察了纳米铜添加剂在石蜡基础油中的抗磨减磨性能,最后分别采用扫描电子显微镜(SEM)和X光电子能谱仪(XPS)分析了磨斑的表面形貌及其化学组成.结果表明:铜纳米微粒添加剂能够显著提高基础油的极压性能,同时具有良好的抗磨性能;发现在摩擦过程中铜纳米微粒在表面形成沉积膜,这种沉积膜与表面修饰层形成的摩擦化学反应膜产生协同作用,从而表现出优良的极压抗磨性. 相似文献
4.
针对钛合金耐磨性差的问题,利用激光技术在TC4钛合金样品表面刻蚀出具有不同形状、间距和宽度(直径)的织构,基于CSM球盘式摩擦磨损试验机研究织构形状参数对钛合金在油润滑条件下摩擦学性能的影响。利用扫描电子显微镜(SEM)观察钛合金表面织构的微观形貌及磨痕形貌,利用白光干涉仪测试表面织构和磨痕的三维轮廓并通过计算得到磨损率。结果表明,网格型织构的摩擦因数比沟槽型和点阵型织构更小并且更稳定。织构的间距和宽度(直径)等形状参数显著影响钛合金的磨损性能。原始表面抛光钛合金样品磨损率高于表面织构处理后样品,原始钛合金样品的磨损机制主要为磨粒磨损和粘着磨损,而由于表面织构能起到收集磨屑,储存润滑油的作用,从而显著提升了钛合金的耐磨性。 相似文献
5.
表面织构技术以其加工容易、应用范围广泛的特点可有效减小和控制表面摩擦与磨损,延长使用寿命。介绍了表面织构的作用、几何参数和加工技术,总结了当前表面织构技术在改善密封、滑动轴承、活塞环和缸套等机械部件摩擦学性能方面的主要研究成果,提出了表面织构的研究方向。 相似文献
6.
仿生织构是仿照生物结构在摩擦副表面加工出特定尺度的纹理结构,以达到预期的表面性能,在工况恶劣的机械摩擦中拥有广阔的应用前景。参考蚯蚓头部多尺度沟槽织构,基于沟槽织构的基本结构参数深度、宽度、间距,在球墨铸铁和灰铸铁表面设计并激光加工多种梯度变化的沟槽织构,利用RTEC多功能摩擦磨损试验机中的销盘模块进行试验,从摩擦因数、磨损量、表面形貌、能量损耗、SEM、元素分布等方面分析其表面摩擦性能及机理。结果表明:同种织构应用于不同材料表面时,摩擦副的摩擦性能会呈现差异性,材料应作为设计织构参数时考虑的要素之一;沟槽织构的结构参数是影响表面抗磨损能力的主要因素之一;间距梯度沟槽织构相较于其它类型的多尺度沟槽织构,拥有最佳的表面性能,得益于其优秀的油膜形成、补充、稳定以及磨屑储存、冲刷能力。 相似文献
7.
表面微织构因其能够有效改善摩擦副之间的摩擦学性能而获得国内外学者的广泛关注。通过将表面微织构与热扩渗技术相结合,可以充分发挥2种技术的优点,进一步提高摩擦副之间的摩擦学性能,为更复杂环境下的应用提供可能。首先概述了表面微织构的常用加工方法及其所加工的织构类型,系统地归纳总结了表面织构在不同润滑工况下的减摩机理。其次,从不同的表面热扩渗技术入手,分别综述了盐浴渗氮技术、等离子渗镀技术、热氧化技术和化学气相沉积与表面织构的协同作用研究现状,根据摩擦因数、磨损量和表面硬度等性能参数,分析总结了不同复合技术的可行性以及对基体摩擦学性能的影响。相对于单一表面处理技术,复合技术能够进一步提高材料的表面硬度,延长织构的使用寿命。一般来说,复合处理表面的耐磨性显著优于单一技术处理的表面和未处理表面,但摩擦因数受工况的影响较大。最后,对该复合技术的研究发展做出总结,提出不同织构参数和热扩渗参数对基体摩擦磨损性能的影响有待进一步探究,开展极端工况下复合技术的应用基础研究,推动复合技术在摩擦领域的发展。 相似文献
8.
提出了一种快速制备具有超疏水性、耐磨性和耐腐蚀性的Ti-10V-2Fe-3Al (TB6)钛合金表面的方法。通过纳秒激光器对抛光的钛合金进行精确烧蚀,构筑了具有平行微沟槽阵列特征的织构表面。随后,利用紫外线灯照射和十八烷基三氯硅烷溶液浸渍进行化学改性,进一步增强了表面的疏水性。从表面形态和化学组分的角度分析了微沟槽间隔对织构表面润湿性的影响。结果表明,在干滑动、水润滑和油润滑条件下,所制备的超疏水表面相较于原始亲水表面,平均摩擦系数分别降低了34%、56%和59%。此外,分析了相关摩擦系数变化的机理。通过动电位极化测试验证,所制备的超疏水表面展现出优异的耐腐蚀性,为钛合金基体提供了有效的长期保护。 相似文献
9.
为提高摩擦副之间的摩擦学性能,润滑油添加剂、低摩擦表面以及表面微织构等作为改善表面摩擦学性能的手段已得到国内外研究工作者的广泛关注并取得了一定的成果,而表面微织构复合固体润滑材料技术作为一种集成了已有各种减摩手段优点的复合技术开始被研究。 文中综述了表面微织构与固体润滑材料复合的物理和化学方法;评述了表面微织构几何形状、参数和固体润滑材料种类对复合表面摩擦学性能的影响;分析了表面微织构复合固体润滑材料的减摩机制;最后指出了该复合技术目前尚待解决的问题,并对该技术下一步的发展方向和实际应用进行了展望。 相似文献
10.
目的 研究磁流体的极性对钛合金光滑表面和织构表面摩擦学性能的影响。方法 以水基磁流体、煤油基磁流体、去离子水和煤油为润滑剂,在UMT?3摩擦磨损试验机上分别进行钛合金光滑表面和织构表面的摩擦磨损实验,得到极性不同的磁性颗粒对不同表面的摩擦因数、磨损量和磨损形貌的影响规律。结果 在光滑钛合金表面,极性磁性颗粒使得摩擦因数下降了8.42%,磨痕宽度下降了8.47%,磨损方式由严重的磨粒磨损和黏着磨损转变为轻微的磨粒磨损。非极性磁性颗粒使得摩擦因数上升了33.94%,磨痕宽度上升了42.20%,磨损方式由轻微的黏着磨损转变为严重的磨粒磨损。在织构表面,极性磁性颗粒的减摩作用进一步增强,而非极性磁性颗粒并没有明显的减摩作用。结论 采用不同极性磁流体润滑时,极性磁性颗粒更容易吸附在钛合金表面,从而增加油膜的厚度和刚度,减小其摩擦因数。 相似文献
11.
目的探究二硫化钼结构以及尺寸对其宏观摩擦学性能以及滑移机制的影响。方法采用水热法制备了尺寸不同的二硫化钼微球花,并与购买的商业化块状二硫化钼以及单层二硫化钼进行对比,将四种二硫化钼粉末在乙醇中进行分散,采用喷涂的方式在硅基底上制备了四种二硫化钼涂层。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对粉末和涂层的形貌、结构进行了表征,并对比研究了涂层的摩擦学性能,通过光学显微镜观察了对偶的形貌,利用SEM和TEM对摩擦界面的结构和形貌进行了研究。结果四种二硫化钼材料均为层状结构的纳米片或微片组成,摩擦系数平稳且均小于0.05。块状二硫化钼寿命最短,摩擦界面覆盖了较少的润滑膜;单层二硫化钼摩擦系数平稳,且寿命最长,摩擦界面由大量纳米片组成,摩擦过程主要是单纯的物理剥离;二硫化钼微球花的寿命介于二者之间,微球花在摩擦力的作用下很容易发生剥离,在摩擦过程中起润滑作用的是剥离的二硫化钼纳米片,摩擦界面覆盖了较厚的致密润滑膜。二硫化钼微球花摩擦后,层间距由0.62 nm增至0.7 nm,层间距的增大有利于良好的润滑。结论尺寸对二硫化钼的滑移机制有影响,从而显著影响其耐磨寿命,层数和尺寸的减小有利于耐磨寿命的提升。 相似文献
12.
13.
目的 研究硅烷偶联剂表面修饰纳米莫来石(Mullite)(Al2O3-SiO2体系)作为添加剂,对聚脲润滑脂摩擦学性能的影响。方法 用硅烷偶联剂(KH550)对纳米Mullite表面进行修饰,分别制备质量分数为0.03%的纳米Mullite和KH-mullite的聚脲润滑脂。采用四球摩擦试验机测试纳米Mullite和KH-mullite作为添加剂对聚脲润滑脂摩擦学性能的影响,利用扫描电子显微镜(SEM)和三维表面形貌仪观察磨损表面形貌,通过X射线能量色散能谱仪(EDS)分析磨损表面的元素分布,使用X射线光电子能谱(XPS)分析磨损表面润滑膜的元素价态,探究添加剂在聚脲润滑脂中的作用机理。结果 经过修饰后,纳米KH-mullite在聚脲润滑脂中的减摩抗磨性能较优,摩擦因数和磨斑直径分别降低了22.4%、15.6%。通过SEM和三维表面轮廓仪观察磨损表面发现,KH-mullite添加剂能够有效降低磨损表面的粗糙度,修复磨损表面。KH-mullite聚脲润滑脂优良的摩擦学性能归功于两点,首先KH-mullite能够沉积并吸附在磨损表面,在起到修复作用的同时促进了润滑膜的形成;其次,KH-mullite能够进入润滑膜中,将摩擦副之间的摩擦方式变为滚动摩擦。结论 Mullite和KH-mullite都具有提升聚脲润滑脂润滑性能的作用,经硅烷偶联剂修饰后的KH-mullite在减摩抗磨性能方面表现更优越。 相似文献
14.
目的 提高石墨与酚醛树脂的界面结合强度,改善酚醛树脂基复合材料的摩擦学性能。方法 用高温浸渗法制备铜包石墨,并制备铜包石墨-酚醛树脂基复合材料。通过摩擦磨损实验,研究铜包石墨对酚醛树脂基复合材料摩擦学性能的影响,并对比相同成分铜/石墨混合填充酚醛树脂基复合材料的摩擦学性能。通过扫描电子显微镜、能谱仪和光学显微镜对摩擦磨损表面进行分析,研究材料摩擦磨损机理。结果 石墨表面经过金属铜处理后,金属铜由分散的聚集态转变为附着态,制备的铜包石墨颗粒整体分散度高、形状好。铜包石墨-酚醛树脂基复合材料中石墨与基体界面结合紧密,保持了酚醛树脂的连续相结构,摩擦磨损表面相对平整,复合材料平均比磨损率为3.98×10?6 mm3/(N.m),瞬时摩擦系数波动幅度小,摩擦磨损机理以粘着磨损为主。相同成分制备的铜/石墨混合填充酚醛树脂基复合材料的界面结合度较差,摩擦磨损表面有较多裂痕,复合材料平均比磨损率为7.80×10?6 mm3/(N.m),瞬时摩擦系数波动幅度大,摩擦磨损机理以磨粒磨损和粘着磨损为主。结论 石墨通过表面金属铜处理,不仅能提高与基体界面结合强度,还能同时有效提高酚醛树脂基复合材料的耐磨性能和摩擦稳定性。 相似文献
15.
目的为石墨增强聚酰亚胺复合材料在海水环境下的摩擦学应用提供实验依据。方法利用SST-ST销/盘摩擦试验机,研究了质量分数为15%石墨增强聚酰亚胺复合材料与17-4PH不锈钢组成的摩擦副在海水介质中的摩擦学性能,并与干摩擦和纯水润滑条件下的摩擦学性能进行比较。结果聚酰亚胺复合材料在干摩擦下的摩擦系数和磨损体积最大,分别为0.134、1.930 mm~3。干摩擦条件下,聚酰亚胺复合材料的磨损表面存在较深的犁沟,在犁沟周围出现了材料塑性流动及粘着剥落现象,对偶件表面有聚酰亚胺复合材料转移。磨损机理主要表现为磨粒磨损、材料塑性变形以及粘着和剥落。在纯水润滑下,聚酰亚胺复合材料表面存在较多材料粘着撕裂现象,同时存在宽浅不一的犁沟,磨损机理主要为粘着磨损和磨粒磨损。在海水润滑下,复合材料的摩擦系数和磨损体积最小,分别为0.086、1.235 mm~3,材料磨损表面十分光滑,只有沿运动方向存在少量轻微犁沟,磨损机理主要表现为磨粒磨损。结论石墨增强聚酰亚胺复合材料在海水中的摩擦学性能优于干摩擦和纯水环境下的摩擦学性能。 相似文献
16.
目的利用慢速搅拌摩擦加工,获得工业纯钛细晶组织,提高其耐磨性能。方法采用慢速搅拌摩擦加工对TA2工业纯钛退火板材进行表面处理,获得细晶结构。使用EBSD技术和显微硬度检测仪对表面微观结构及力学性能进行表征。采用球盘式摩擦磨损试验仪对搅拌摩擦加工前后的样品进行摩擦磨损性能测试,计算磨损率,并使用SEM及EDS分析磨痕特征。结果搅拌摩擦加工处理后,工业纯钛晶粒尺寸显著细化,小角度晶界比例较高,加工硬化程度高。搅拌摩擦加工样品氧化磨损较为严重,粘着磨损程度减小。搅拌摩擦加工后,样品主要磨损方式由粘着磨损和二体磨损转变为氧化磨损和三体磨损。经过180 r/min、25 mm/min处理的工业纯钛磨损率仅为未加工样品的1/4左右。结论慢速搅拌摩擦加工可同时提高工业纯钛表面硬度及耐磨损性能,较小的晶粒尺寸及合适的加工硬化程度可减轻粘着磨损和磨粒磨损。 相似文献
17.
传统的氰化物镀铜工艺会对环境造成极大的危害,钛合金无氰镀铜技术具有较高的研究价值。采用无氰化物硫酸盐镀铜技术在TC4钛合金表面制备铜镀层,利用扫描电子显微镜和能谱仪对其镀层形貌、成分、结合力、磨损形貌进行分析,并利用电化学方法和摩擦磨损试验研究其抗蚀性与耐磨性。结果表明:无氰化物镀铜技术在TC4钛合金表面电镀铜可获得表面均匀致密,结合力良好的镀层;TC4钛合金表面电镀铜后,摩擦因数由0.520降至0.381,可见钛合金表面铜镀层通过减摩作用能有效的改善和提高其耐摩擦磨损性能。TC4钛合金镀铜和未镀铜表面均存在钝化区,两者维钝电流密度分别为1×10-2 A/cm2和4×10-5 A/cm2,均有较好的抗腐蚀性能,TC4钛合金镀铜后的表面抗腐蚀性能较基体有所降低。 相似文献
18.
19.