首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nucleic acid sensor capable of automated sample and reagent loading, real-time PCR, automated detection, and sample line cleaning was tested. Real-time PCR reactions were performed with Salmonella enterica in autoclaved and spent alfalfa sprout irrigation water. S. enterica boiled cells were detected over a range of approximately 104 to 108 CFU/reaction (rxn). It was possible to generate enough PCR product to visualize a band on a gel at the expected size over approximately five orders of magnitude from 3.2 × 103 to 108 CFU/rxn. Automated detection experiments yielded correct identification of 9/9 positive control reactions over a range of 104 to 108 CFU/rxn, correctly identified a negative control reaction, and a sample of 3.2 × 103 CFU/rxn was incorrectly identified as negative. Primer dimers were not seen in positive or negative control reactions with sprout irrigation water, suggesting that it may be possible to improve the detection limit simply by increasing the number of thermal cycles or by lowering the annealing temperature. The system required no interpretation of real-time PCR data by the operator. The entire process of loading, running the PCR, automated data interpretation, and sample line cleaning was completed in under 2 h and 20 min, significantly faster than it would take to ship a sample and have it tested by an independent laboratory.  相似文献   

2.
In this work, nanolayer MIP (molecularly imprinted polymer) is used to achieve suitable conformation for catalyzing AP (allopurinol) redox reaction. Also, a sensitive electrochemical sensor was fabricated for AP based on MIP immobilized on multiwall carbon nanotube (MWCNT) surface. Thin film of MIP immobilized on MWCNT surface (MIPCNT) with specific recognition sites for AP was cast on glassy carbon electrode (GCE). The morphology and features of the film were characterized by field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometric measurements (It) in detail. The near equilibrium time to adsorb AP on the surface of electrode is about 9 min. The modified electrode was used to detect the concentration of AP with a linear range and detection limit (S/N = 3) of 0.01–1.0 μM and 6.88 nM, respectively. The MIPCNT film displayed an excellent selectivity toward AP. Finally, the modified electrode was successfully applied to determine AP in the human serum sample and two brand tablets.  相似文献   

3.
This paper presents an environmentally friendly disposable heavy metal ion sensor for in situ and online monitoring in the nature and physiological systems. The miniaturized sensor chip consists of a non-toxic microfabricated bismuth (Bi) working electrode that replaces the conventional mercury electrodes, an integrated Ag/AgCl reference electrode, a gold counter electrode, and microfluidic channels. In this work, the electrochemical behavior of the Bi working electrode was characterized in several non-deaerated buffer solutions using cyclic voltammetry. The detection and quantification of Pb (II) and Cd (II) were statically performed using anodic stripping voltammetry inside the microchannels, in the Pb (II) concentration range of 25–400 ppb (R2 = 0.991) with limit of detection of 8 ppb for 60 s deposition, and in the Cd (II) concentration range of 28–280 ppb (R2 = 0.986) with limit of detection of 9.3 ppb for 90 s deposition. Particularly, the applications of this sensor chip have been reported with the examples of in situ measurement of Cd (II) concentration in soil pore and ground water and online direct measurement of Cd (II) concentration in cell culture media in its native environment.  相似文献   

4.
This paper describes a novel concept of integrated on-chip fiber free laser-induced fluorescence detection system. The poly-dimethylsiloxane (PDMS) chip was fabricated using soft lithography and was bonded with a glass substrate of 150 μm thickness that reduced the distance of channel-to-sidewall to less than 180 μm. The cells and particles detection was conducted by an external single fiber close to the glass substrate that transmitted laser light for simultaneous excitation and receipt of the emission light signals. The performance of the proposed device was demonstrated using fluorescence beads, stained white blood cells, and yeast cells. The experimental results showed the simplicity and flexibility of the proposed device configuration which can provide convenient on-chip integration interface for fast, high throughput, and low-cost laser-induced fluorescence detection micro flow cytometer.  相似文献   

5.
A mediator-free electrochemical immunoassay protocol based on a disposable immunosensor for the detection of hepatitis B surface antigen (HBsAg) in human serum was developed. To fabricate such an immunosensor, a layer of sol–gel composite film containing room temperature ionic liquid and chitosan was initially formed on a glassy carbon electrode. Nanogold particles were then adsorbed onto the membrane via the amine groups of chitosan molecules, and then horseradish peroxidase (HRP)-labeled hepatitis B surface antibodies (HRP-anti-HBs) were immobilized onto the nanogold surface. With a non-competitive immunoassay format, the antibody–antigen complex could be formed by a simple one-step immunoreaction between the immobilized HRP-anti-HBs and HBsAg in sample solution. The formed immunocomplex inhibited partly the active center of the HRP, which decreased the immobilized HRP toward the reduction of H2O2. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the current change obtained from the carried HRP relative to H2O2 system was proportional to HBsAg concentration in the range of 1.5–400 ng/mL with a detection limit of 0.5 ng/mL (at 3δ). The reproducibility, selectivity, and stability of the proposed immunosensor were acceptable. Moreover, the proposed immunosensors were used to analyze HBsAg in human serum specimens. Analytical results of clinical samples suggested that the developed immunosensor has a promising alternative approach for detecting HBsAg in the clinical diagnosis.  相似文献   

6.
A simple and highly sensitive method is described for direct voltammetric determination of noscapine in blood and pharmaceutical sample. Glassy carbon electrode with effective method is modified with multiwall carbon nanotubes (MWNTs) to cause activation of multiwall carbon nanotubes structures for electrocatalyzes of noscapine oxidation. The cyclic voltammetric (CV) results indicated that MWNTs remarkably enhances electrocatalytic activity toward the oxidation of noscapine, which is leading to considerable improvement of anodic peak current for noscapine, and allows the development of a highly sensitive voltammetric sensor for detection of noscapine in pharmaceutical and clinical samples. Under the optimum condition, the calibration curve was linear in the concentration range 4.0 × 10−7–1.0 × 10−4 mol L−1 with the detection limit of 8.0 × 10−8 mol L−1 and relative standard deviation (R.S.D.%) lower than 1.0% (n = 5). Finally, some kinetic parameters were determined and multistep mechanism for oxidation of noscapine for first time was proposed.  相似文献   

7.

Here we report an ultrasensitive trace mercury(II) micro sensor based on heat-shrinkable polymer (polyolefins, PO). The layer-by-layer self-assembly (LBL SA) method was employed to modify mixed gold nanoparticle (Au NPs) and graphene solution on a micro gold electrode with PO substrate. The unique wrinkle structure of the electrode surface and superior properties of modification film enhanced the performance of LBL SA graphene–Au NPs shrink sensor greatly in determination of Hg(II) using anodic stripping voltammetry (ASV): compared with a shrink gold electrode without surface modification, the sensitivity was improved for about 3.7 times from 0.197 to 0.721 μA/ppb; compared with a same-sized sensor without surface modification nor shrink, the sensitivity was improved for over 50 times. This sensor’s detection limit of Hg(II) was achieved as 0.931 ppb with a sensitivity of 0.721 μA/ppb. This simple but highly sensitive sensor can be widely used in applications of on-line environmental monitoring of Hg(II).

  相似文献   

8.
Performing medical diagnosis in microfluidic devices could scale down laboratory functions and reduce the cost for accessible healthcare. The ultimate goal of such devices is to receive a sample of blood, perform genetic amplification (polymerase chain reaction—PCR) and subsequently analyse the amplified products. DNA amplification is generally performed with DNA purified from blood, thus requiring on-chip implementation of DNA extraction steps with consequent increases in the complexity and cost of chip fabrication. Here, we demonstrate the use of unprocessed whole blood as a source of template for genomic or viral targets (human platelet antigen 1 (HPA1), fibroblast growth factor receptor 2 (FGFR2) and BK virus (BKV)) amplified by PCR on a three-layer microfluidic chip that uses a flexible membrane for pumping and valving. The method depends upon the use of a modified DNA polymerase (Phusion™). The volume of the whole blood used in microchip PCR chamber is 30 nl containing less than 1 ng of genomic DNA. For BKV on-chip whole blood PCR, about 3000 copies of BKV DNA were present in the chamber. The DNA detection method, laser-induced fluorescence, used in this article so far is not quantitative but rather qualitative providing a yes/no answer. The ability to perform clinical testing using whole blood, thereby eliminating the need for DNA extraction or sample preparation prior to PCR, will facilitate the development of microfluidic devices for inexpensive and faster clinical diagnostics.  相似文献   

9.
An electrochemical sensor for hydroperoxides determination was investigated. The sensor was based on the electrocatalytic reduction of hydroperoxides on Prussian blue (PB)-modified glassy carbon electrode. The modified electrode possesses a high electrocatalytic effect towards all studied peroxides with the highest effect obtained with H2O2 followed by tert-butyl hydroperoxide (TBH), cumene hydroperoxide (CH) and linoleic acid hydroperoxide (LAH). In addition, the modified electrode showed a good stability and a fast response time (<20 s). The lower detection limits of H2O2, TBH, CH and LAH were found to be 10−7 mol L−1, 2 × 10−7 mol L−1, 3.5 × 10−7 mol L−1 and 4 × 10−7 mol L−1, respectively. The electrochemical sensor was then applied for amperometric determination of peroxide value (PV) in edible oil at an applied potential of 50 mV (vs. Ag/AgCl (1 M KCl)). A good linearity has been found in the range 0.02–1.0 mequiv. O2/kg, with a detection limit (S/N = 3) of 0.001 mequiv. O2/kg. The precision of the method (R.S.D., n = 9) for within and between-days is better than 1.9% and 2.7%, respectively at 0.1 mequiv. O2/kg. The method was successfully applied to the determination of PV in real edible oil samples with an excellent agreement with results obtained with the official standard procedure. The proposed method is accurate, simple, cheap and could be used to control edible oil rancidity with a high sample throughputs (more than 120 samples/h).  相似文献   

10.
Wu  Zeyang  Chen  Xueye 《Microsystem Technologies》2019,25(8):3157-3164

In this paper, we design a novel low voltage of electroosmotic micromixer with fractal structure. Because of the influence of high voltage on electrode and solution, we propose an electroosmotic micromixer of low voltage. In order to optimize the electrode position, we design the Cantor fractal according to Cantor principle, and arrange the electrode pairs on the fractal. Then we study the mixing effect of the electrode pairs length on the mixing performance, the effect of the electrode position and the effect of fractal electrode group spacing on the mixing efficiency. When the electroosmotic micromixer has three electrode groups at alternating voltage of 5 V and alternating frequency of 8 Hz, the best mixing efficiency can reach 95.2% in one second. We call this micromixer Cantor fractal electroosmotic micromixer (CFEM). At the same Re, the mixing efficiency of CFEM is higher than the electrodeless micromixer 50%.

  相似文献   

11.
A novel sensor was developed for simultaneous detection of Pb, Cd and Zn, based on the differential pulse anodic stripping response at a bismuth/poly(p-aminobenzene sulfonic acid) (Bi/poly(p-ABSA)) film electrode. This electrode was generated in situ by depositing simultaneously bismuth and the metals by reduction at −1.40 V on the poly(p-ABSA) modified electrode. Compared with the bismuth film electrode, the Bi/poly(p-ABSA) film electrode can yield a larger stripping signal for Pb, Cd and Zn. Under the optimum conditions, a linear response was observed for Cd and Zn in the range from 1.00 to 110.00 μg L−1 and for Pb in the range from 1.00 to 130.00 μg L−1. The detection limits of Pb(II), Cd(II) and Zn(II) were 0.80, 0.63 and 0.62 μg L−1, respectively. Finally this sensor had been applied to the simultaneous determination of Pb(II), Cd(II) and Zn(II) in river water samples and the results were quite corresponding to the value obtained by atomic absorption spectrometry.  相似文献   

12.
Microbial biosensors have been developed for voltammetric determination of various substances. This paper describes the development of a new biosorption based microbial biosensor for determination of Cu2+. The developed biosensor is based on carbon paste electrode consisting of whole cells of Circinella sp. Cu2+ was preconcentrated on the electrode surface at open circuit and then cathodically detected with the reduction of Cu2+. The voltammetric responses were evaluated with respect to percentage cell loading in the carbon paste, preconcentration time, pH of preconcentration solution, scan rate and interferences. The optimum response was realized by biosensor constructed using 5 mg of dry cell weight per 100 mg of carbon paste in pH 5.5 preconcentration solution. Under the optimum experimental conditions, the developed microbial biosensor exhibited an excellent current response to Cu2+ over a linear range from 5.0 × 10−7 to 1.0 × 10−5 M (r2 = 0.9938) with a detection limit of 5.4 × 10−8 M (S/N = 3). The microbial biosensor had good sensitivity and reproducibility (R.S.D. 4.3%, n = 6). Finally, the applicability of the proposed microbial biosensor to voltammetric determination of Cu2+ in real sample was also demonstrated and validated with atomic absorption spectrophotometric (AAS) method.  相似文献   

13.
ABSTRACT

End-user acceptance is considered as a significant factor influencing the success of enterprise information system (EIS) implementations and operations. This study conceptualizes three aspects of EIS user interfaces (UIs), namely information overload, control familiarity, and UI fit, and proposes a model to understand their effect on two major factors that are considered to influence the end-user acceptance of these systems: EIS end user’s performance expectancy and effort expectancy. We developed a theoretical model and multiitem scales for the proposed EIS UI characteristics and tested the model empirically with data from a survey performed with a sample 98 EIS end users. The results from our test provide evidence for the key role that EIS UI design plays in the end user’s performance and effort expectancy.  相似文献   

14.
Electrochemical determination of amino acids on a Cu electrode was established as an attractive scheme for non-electroactive amino acids after microchip electrophoresis separation. Five amino acids (arginine, proline, histidine, valine, and serine) achieved efficient separation within 60 s on a titanium dioxide nanoparticles (TiO2 NPs) coated poly(dimethylsiloxane) (PDMS) microchip, and then successfully detected on a Cu electrode in end-channel detection mode. In the slightly basic borate medium, anodic currents occur for amino acids due to their ability to form Cu(II) complexes and thereby enhance the electrochemical dissolution of Cu electrode substrate. The increase of the anodic current measured is proportional to the amino acid concentration added to the solution, and therefore, enables direct detection of non-electroactive amino acids on the Cu electrode. The detection limits (S/N = 3) for arginine, proline, histidine, valine, and serine were measured to be 7, 6, 5, 6, and 5 μM, respectively, with the linear ranges all from 25 to 500 μM. In addition, compared with the native PDMS microchip, resolutions and separation efficiencies of amino acids on the modified microchip were considerably enhanced with the theoretical plate numbers of 8.9 × 103, 6.6 × 104, 4.8 × 104, 5.6 × 104, and 4.4 × 104 plates m−1, respectively. The proposed Cu electrode response demonstrated good reproducibility and stability, with no apparent loss of response for periods as long as 4 weeks.  相似文献   

15.
The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic oxidation of NAC among biologically important compounds in buffered solutions at pH of 7.0. The best voltammetric responses were obtained for a carbon-paste electrode (CPE) modified with a salophen complex containing para-methoxy groups on its salicylaldehyde ring. The analytical response of the modified electrode for response to other sulfhydryl compounds (e.g., cysteine, penicillamine, captopril and mercaptopropionyl glycine) in comparison to NAC was investigated by CV and DPV methods. The DPV method was applied as a sensitive method for the quantitative detection of the trace amounts of NAC. A linear dynamic range from 1 × 10−7 to 1 × 10−4 M with calibration sensitivity of 0.0646 μA/μM is resulted for NAC in DPV measurements. The detection limit was 5 × 10−8 M, which is remarkably lower than those reported previously for NAC using other modified electrodes. The results of voltammetric determinations show a very good reproducibility, and the R.S.D. for the slope of the calibration curve, based on 10 measurements in a period of two months, was <3.9%. The detection system provides very stable electrochemical responses toward NAC, makes it very suitable for using in pharmaceutical and clinical measurements.  相似文献   

16.

Comparator is an essential building block in many digital circuits such as biometric authentication, data sorting, and exponents comparison in floating-point architectures among others. Quantum-dot Cellular Automata (QCA) is a latest nanotechnology that overcomes the drawbacks of Complementary Metal Oxide Semiconductor (CMOS) technology. In this paper, novel area optimized 2n-bit comparator architecture is proposed. To achieve the objective, 1-bit stack-type and 4-bit tree-based stack-type (TB-ST) comparators are proposed using QCA. Then, two tree-based architectures of 4-bit comparators are arranged in two layers to optimize the number of quantum cells and area of an 8-bit comparator. Thus, this design can be extended to any 2n-bit comparator. Simulation results of 4-bit and 8-bit comparators using QCADesigner 2.0.3 show that there is a significant improvement in the number of quantum cells and area occupancy. The proposed TB-ST 8-bit comparator uses 2.5 clock cycles and 622 quantum cells with area occupancy of 0.49 µm2 which is an improvement by 10.5% and 38%, respectively, compared to existing designs. Scaling it to a 32-bit comparator, the proposed architecture requires only 2675 quantum cells in an area of 2.05 µm2 with a delay of 3.5 clock cycles, indicating 9.35% and 28.8% improvements, respectively, demonstrating the merit of the proposed architecture. Besides, energy dissipation analysis of the proposed TB-ST 8-bit comparator is simulated on QCADesigner-E tool, indicating average energy dissipation reduction of 17.3% compared to existing works.

  相似文献   

17.
Luo  Shi-Wei  Lee  Shyong  Fuh  Yiin-Kuen 《Microsystem Technologies》2017,23(6):2065-2074

A uniformly distributed electrolyte system based on enhanced micro-pillars flow field design is proposed for a vanadium redox flow battery (VRFB). The uniformity experiments show that the flow uniformity can be effectively increased and normalized velocity variation for any channel is measured to be less than 18 %, demonstrating the effectiveness of micro-pillars for enhanced flow field. Experimental validation is carried out experimentally and the effect of different assembly torque is also investigated for VRB cell electrochemical performance via polarization and cyclic voltammograms (CV) test. The results show that an optimal assembly torque (11 N-m) can yield a significant improvement of 68.5 % current density when compared with the case of 10 N-m. Furthermore, the CV results clearly indicate that the optimal assembly torque with enhanced micro-pillars design can result in the 37.3 % improvement of electrochemical surface area. Moreover, the contact pressure contours from the pressure-sensitive films are measured to check the influence on the configuration of VRFB unit cell.

  相似文献   

18.

In this paper, MEMS-based capacitive microphone and low-cost amplifier are designed for low-cost power-efficient hearing aid application. The developed microphone along with the associated circuitry is mounted on a common board in the form of pocket-type (body-worn) device. The designed microphone consists of a flexible circular silicon nitrite (Si3N4) diaphragm and a polysilicon-perforated back plate with air as dielectric between them. The incident acoustic waves on the sensor cause deflection of the diaphragm to alter the air gap between the perforated back plate (fixed electrode) and the diaphragm (moving plate) which causes a change in capacitance. The acoustic pressure applied to the microphone is from 0 to 100 Pa for an operating range of 100 Hz–10 kHz which corresponds to the audible frequency range in case of human beings. The main purpose of this work is to increase the longevity of battery used in conventional hearing aids. The designed MEMS microphone with Si3N4 diaphragm is capable of identifying acoustic frequencies (100 Hz to 10 kHz) which correspond to a specific change in absolute pressure from 0 to 100 Pa for 2-micron-thick diaphragm with a sensitivity of about 0.08676 mV/Pa. The design of the sensor and the characteristics analysis are performed in FEM-based simulation software, which are later validated in real time. The prototype is designed using MEMS microphone and low-cost amplifier ICs with biasing components in the form of pocket-type (body-worn) hearing aid. In order to study the performance of proposed device, three different market-available amplifiers with controllable gain are used. Finally, the performance of the hearing aid is studied through audio spectrogram analysis to choose the best-suited amplifier among the three.

  相似文献   

19.
The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L−1 KNO3 with pH adjusted to 2.25 with HNO3, an accumulation potential of −0.3 V vs. Ag/AgCl (3.0 mol L−1 KCl) for 300 s and a scan rate of 100 mV s−1. Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 × 10−8 to 1.60 × 10−5 mol L−1 with a detection limit of 1.00 × 10−8 mol L−1. The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level.  相似文献   

20.

The purpose is to study the applicability of digital and intelligent real-time Image Processing (IP) in fitness motion detection under the environment of the Internet of Things (IoT). Given the absence of real-time training standards and possible workout injury problems during fitness activities, an intelligent fitness real-time IP system based on Deep Learning (DL) is implemented. Specifically, the keyframes of the real-time images are collected from the fitness monitoring video, and the DL algorithm is introduced to analyze the fitness motions. Afterward, the performance of the proposed system is evaluated through simulation. Subsequently, the Noise Reduction (NR) performance of the proposed algorithm is evaluated from the Peak Signal-to-Noise Ratio (PSNR), which remains above 20 dB for seriously noisy images (with a noise density reaching up to 90%). By comparison, the PSNR of the Standard Median Filter (SMF) and Ranked-order Based Adaptive Median Filter (RAMF) algorithms are not higher than 10 dB. Meanwhile, the proposed algorithm outperforms other DL algorithms by over 2.24% with a detection accuracy of 97.80%; the proposed system can adaptively detect the fitness motion, with a transmission delay no larger than 1 s given a maximum of 750 keyframes. Therefore, the proposed DL-based intelligent fitness real-time IP algorithm has strong robustness, high detection accuracy, and excellent real-time image diagnosis and processing effect, thus providing an experimental reference for sports digitalization and intellectualization.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号