共查询到20条相似文献,搜索用时 60 毫秒
1.
针对传统协同过滤推荐算法在数据稀疏的情况下存在的性能缺陷和相似性度量方法的不足,为了提高推荐精度,改进原算法得到了一种基于多层次混合相似度的协同过滤推荐算法。该算法主要分为三个不同的层次:首先采用模糊集的概念将用户评分模糊化,计算用户的模糊偏好,并结合用户评分的修正余弦相似度和用户评分的Jarccad相似度总体作为用户评分相似度;再对用户评分进行分类来预测用户对项目类别的兴趣程度,从而计算出用户兴趣相似度;然后利用用户的特征属性来预测用户之间的特征相似度;其次根据用户评分数量来动态地融合用户兴趣相似度及用户特征相似度;最后融合三个层次的相似度作为用户混合相似度的结果。利用MovieLens公用数据集对改进前后的算法进行对比实验,结果表明:当在邻居集合数量较少时,改进的混合算法相对修正余弦相似度算法的平均绝对偏差(MAE)下降了5%左右;较改进的修正的Jaccard相似性系数的协同过滤(MKJCF)算法也存在略微的优势,随着邻居集合数的增加MAE也平均下降了1%左右。该算法采用多层次的推荐策略提高了用户的推荐精度,有效地缓解了数据稀疏性问题和单一度量方法的影响。 相似文献
2.
为提高推荐系统在数据稀疏情况下的推荐质量,提出一种基于用户特征迁移的协同过滤推荐模型.利用矩阵分解技术提取辅助领域的用户特征,通过建立正则项约束的矩阵分解模型,将辅助领域的用户特征迁移到目标领域中,协助目标领域用户特征的学习,最终生成目标领域的用户推荐.设计快速收敛的Wiberg算法得到模型的最优解,并对实际应用中的可行性进行分析.通过对2个公开数据集的实验结果表明,该模型能够实现辅助领域用户特征的迁移,有效提高目标领域的推荐质量. 相似文献
3.
4.
5.
针对用户评分数据稀疏性和项目最近邻寻找的不准确性问题,提出了一种项目子相似度融合的协同过滤推荐算法.该算法根据目标用户每一属性取值,选取与该属性值一致的用户作为用户子空间,并在此空间上计算目标项目与其他项目之间的相似度(称其为项目子相似度).在此基础上,以项目子相似度为依据选取目标项目的K最近邻,计算其预测评分;最后对用户不同属性上的预测评分进行加权求和,得到目标项目的最终评分.实验结果表明,该算法能准确地选取目标项目的最近邻,明显改善了推荐质量. 相似文献
6.
基于邻居(neighborhood-based)的协同过滤是一项很受欢迎的用于推荐系统的技术.它可以分为基于用户(user-based)和基于项目(item-based)协同过滤.它通过用户或项目之间的相似性预测用户对于未评分项目的偏好.然而,传统的相似度方法易受数据稀疏影响.为了解决这个问题,提出了基于心理测量学(psychometrics-based)的相似度方法.实验结果表明,提出的相似方法更适合基于邻居协同过滤,它们可以提高推荐准确性和覆盖度(coverage). 相似文献
7.
推荐算法通过历史数据发现用户的兴趣偏好,在数据资源中寻找用户的偏好信息,并对用户进行推荐。目前,推荐系统中的协同过滤算法在各领域应用广泛,由于数据稀疏性和冷启动,使得推荐质量有所下降,为提升推荐精度,有学者从相似度方向进行研究。总结了推荐系统中最广泛使用的协同过滤算法,以及推荐系统中常用的传统相似度算法;对比分析了基于Pearson相关系数的相似度、余弦相似度、修正的余弦相似度等的适用场景;从冷启动和数据稀疏等方面分析了相似度的研究现状,研究表明通过混合相似度计算用户相似性,提高了推荐质量。最后,总结了相关文献在改进后存在推荐效率低、复杂度增高的问题,在提高推荐精度和推荐效率方面对相似度改进进行了展望。 相似文献
8.
为提高协同过滤推荐方法的准确性和有效性,提出一种基于改进型启发式相似度模型的协同过滤推荐方法PSJ。该方法考虑了用户评分差值、用户全局评分偏好和用户共同评分物品数三个因素。PSJ方法的Proximity因子使用指数函数反映用户评分差值对用户相似度的影响,这样也可避免零除问题;将NHSM方法中的Significance因子和URP因子合并成PSJ方法的Significance因子,这使得PSJ方法的计算复杂度低于NHSM方法;而且为了提高在数据稀疏情况下的推荐效果,PSJ方法同时考虑了用户间的评分差值和用户全局评分两个因素。实验采用Top-k推荐中的查准率和查全率作为衡量标准。实验结果表明,当推荐物品数大于20时,与NHSM、杰卡尔德算法、自适应余弦相似度(ACOS)算法、杰卡尔德均方差(JMSD)算法和皮尔逊相关系数算法(SPCC)相比,PSJ方法的查准率与查全率均有提升。 相似文献
9.
基于用户的协同过滤推荐算法在进行近邻用户的筛选时以用户之间相似度的计算结果作为依据,数据量的增大加剧了数据的稀疏程度,导致了计算结果的准确性较差,影响了推荐准确度.针对该问题本文提出了一种基于用户联合相似度的推荐算法.用户联合相似度的计算分为用户对项目属性偏好的相似度和用户之间人口统计学信息的相似度两个部分.用户的项目属性偏好引入了LDA模型来计算,计算时评分数据仅作为筛选依据,因而避免了对数据的直接使用,减缓了稀疏数据对相似度计算结果的影响;用户之间人口统计学信息的相似度则在数值化人口统计学信息之后通过海明距离进行度量.实验结果表明,本文提出的算法在推荐准确度上优于传统协同过滤推荐算法. 相似文献
10.
11.
12.
A collaborative filtering framework based on both local user similarity and global user similarity 总被引:1,自引:0,他引:1
Collaborative filtering as a classical method of information retrieval has been widely used in helping people to deal with
information overload. In this paper, we introduce the concept of local user similarity and global user similarity, based on
surprisal-based vector similarity and the application of the concept of maximin distance in graph theory. Surprisal-based
vector similarity expresses the relationship between any two users based on the quantities of information (called surprisal) contained in their ratings. Global user similarity defines two users being similar if they can be connected through their
locally similar neighbors. Based on both of Local User Similarity and Global User Similarity, we develop a collaborative filtering
framework called LS&GS. An empirical study using the MovieLens dataset shows that our proposed framework outperforms other
state-of-the-art collaborative filtering algorithms. 相似文献
13.
14.
提出了一个新的相似度概念——元相似度,并在此基础上对标准的协同过滤算法进行了改进.元相似度即相似度的相似度,与相似度相比元相似度是基于相似度矩阵而不是相关矩阵计算得出的.即使是在相关矩阵中未购买过任何相同商品的两个用户也可以用元相似度反映他们之间的相似关系,这样在一定程度上解决了冷启动和矩阵稀疏性问题.综合考虑元相似度... 相似文献
15.
16.
传统的协同过滤推荐算法为目标用户推荐时,考虑了所有用户的历史反馈信息对物品相似度的影响,同时相似度的度量仅依靠用户评分信息矩阵,导致了推荐效果不佳。为解决上述问题,提出了基于用户谱聚类的Top-N协同过滤推荐算法(SC-CF),即应用谱聚类将兴趣相似的用户分成一类,具有相似兴趣爱好的用户比其他用户具有更高的推荐参考价值,然后在类中为目标用户推荐。SC-CF+算法在SC-CF算法的基础上,在相似度度量方法中分别引入了物品时间差因素、用户共同评分权重、流行物品权重。实验结果表明,提出的两种算法提高了推荐结果的召回率。 相似文献
17.
18.
Collaborative filtering is one of widely used recommendation approaches to make recommendation services for users. The core of this approach is to improve capability for finding accurate and reliable neighbors of active users. However, collected data is extremely sparse in the user-item rating matrix, meanwhile many existing similarity measure methods using in collaborative filtering are not much effective, which result in the poor performance. In this paper, a novel effective collaborative filtering algorithm based on user preference clustering is proposed to reduce the impact of the data sparsity. First, user groups are introduced to distinguish users with different preferences. Then, considering the preference of the active user, we obtain the nearest neighbor set from corresponding user group/user groups. Besides, a new similarity measure method is proposed to preferably calculate the similarity between users, which considers user preference in the local and global perspectives, respectively. Finally, experimental results on two benchmark data sets show that the proposed algorithm is effective to improve the performance of recommender systems. 相似文献
19.
研究了一种新的协同过滤推荐方法。针对推荐算法中相似度存在的不足,提出了兼顾"形状-距离"的云模型综合相似度测算方法;考虑用户之间的兴趣匹配,提出了云模型熟悉相似度的概念;提出了基于云模型熟悉相似度的邻居用户选择方法,进而产生推荐。实验结果表明,本方法提高了推荐准确度。 相似文献
20.
针对传统协同过滤推荐算法遇到冷启动情况效果不佳的问题,提出一种基于项目相似性度量方法(IPSS)的项目协同过滤推荐算法(ICF_IPSS),其核心是一种新的项目相似性度量方法,该方法由评分相似性和结构相似性两部分构成:评分相似性部分充分考虑两个项目评分之间的评分差、项目评分与评分中值之差,以及项目评分与其他评分平均值之差;结构相似性部分定义了共同评分项目占所有项目比重,并惩罚活跃用户的逆项目频率(ⅡF)系数。在Movie Lens和Jester数据集下测试算法准确率。在Movie Lens数据集下,当近邻数量为10时,ICF_IPSS的平均绝对偏差(MAE)和均方根误差(RMSE)分别比基于Jaccard系数的均方差异系数的项目协同过滤算法(ICF_JMSD)低3.06%和1.20%;当推荐项目数量为10时,ICF_IPSS的准确率和召回率分别比ICF_JMSD提升67.79%和67.86%。实验结果表明,基于IPSS的项目协同过滤算法在预测准确率和分类准确率方面均优于基于传统相似性度量的项目协同过滤算法,如ICF_JMSD等。 相似文献