首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对目前基于p型硅片制备的单结太阳电池进一步提高表面钝化膜生产效率,利用氮化硅(SiNx)薄膜良好的钝化效果与价格低廉的二氧化钛(TiO2)膜,降低SiNx镀膜厚度减薄对少子寿命的影响。在单晶硅片表面先用PECVD法沉积SiNx薄膜,然后用热喷涂沉积TiO2薄膜。对比测试了热喷涂沉积TiO2薄膜前后电池的性能,结果表明在SiNx膜上增加TiO2膜层后少子寿命明显提高,这可能是TiO2膜结构内存在固定正电荷所致。这种双层结构封装后的太阳电池显示出了较好的光学与电学性能,对进一步改进太阳电池性能具有重要参考价值。  相似文献   

2.
减反射特性是进一步提高N型太阳电池能量转换效率的重要因素之一。研究采用Al2O3/SiNx叠层优化了N型太阳电池的减反射特性,并通过理论模拟和实验测量系统地探讨了叠层中SiNx厚度对表面反射性能的影响。研究证实在Al2O3层上增加一层SiNx,可以有效地优化表面减反射性质,从而提高N型太阳电池的光伏性质。  相似文献   

3.
探究了多晶硅太阳电池表面双层氮化硅减反、钝化结构的产线工艺.示范性实验结果表明,直接与多晶硅接触的底层氮化硅的厚度是双层氮化硅减反、钝化能力的一个关键因素.相对于单层氮化硅减反、钝化的多晶硅太阳电池,厚度优化的双层氮化硅减反、钝化电池片的短路电流和开路电压均有所改善,相应的光电转换效率提升超过0.2%.光电转换效率的提升归因于双层氮化硅减反、钝化结构有利于降低光损失和表面钝化.  相似文献   

4.
PECVD制备氮化硅薄膜的研究   总被引:2,自引:0,他引:2  
赵崇友  蔡先武 《半导体光电》2011,32(2):233-235,239
采用PECVD法制备了氮化硅薄膜,探讨了沉积参数对氮化硅薄膜折射率的影响和衬底温度对氮化硅薄膜形貌和成分的影响规律。结果表明,不同的NH3流量可改变反应腔体内的氮硅比,对氮化硅的折射率,即减反射性能影响较大;衬底温度是影响氮化硅薄膜形貌和成分的主要因素;在衬底温度达到400℃时,形成了白色团状或岛状的氮化硅膜。  相似文献   

5.
单晶硅太阳电池纳米减反射膜的研究   总被引:1,自引:0,他引:1  
报道了用热喷涂工艺制备单晶硅太阳电池纳米减反射膜的研究结果 ,讨论了衬底温度对 Ti Ox 纳米减反射膜结构及折射率的影响 ,优化了热喷涂的工艺条件 ,并研究了 Ti Ox 纳米减反射膜对单体太阳电池效率的贡献。实验证明 ,用热喷涂工艺制备的纳米 Ti Ox 减反射膜可使 1 0 0 mm× 1 0 0 mm单体太阳电池的平均光电转换效率增加 8%~ 9%。  相似文献   

6.
7.
介绍了晶体硅太阳电池表面钝化技术的发展历程,表面钝化膜在晶体硅太阳电池中所起的作用,以及晶体硅太阳电池中各种钝化膜和表面钝化技术。阐述了国内和国际对晶体硅太阳电池表面钝化技术的最新研究动态,重点论述了SiO2,SiNx,SiCx和Al2O3,以及这些钝化膜的叠层钝化技术的优缺点。在此基础上进一步指出SiO2/SiNx叠层钝化膜将成为今后工业化生产的研究重点,Al2O3及其叠层钝化膜将成为今后实验室的研究重点,由于表面钝化是提高晶体硅太阳电池转换效率最有效的手段之一,今后晶体硅太阳电池表面钝化技术仍将是国内和国际研究的热点问题之一。  相似文献   

8.
多晶硅太阳电池PECVD氮化硅钝化工艺的研究   总被引:1,自引:0,他引:1  
介绍等离子体化学气相淀积(PECVD)制备减反射钝化膜。将PECVD设备运用于太阳电池生产线上,发现通过PECVD设备可以对多晶硅太阳电池有很好的钝化效果。分析PECVD对多晶硅太阳电池钝化机理。  相似文献   

9.
结合AM0太阳光谱特性对空间硅太阳电池的减反射膜进行了设计分析,得到了最小反射时的最佳膜厚.分别讨论了单、双、三层减反射膜厚度变化对反射率的影响,并对有钝化层的SiO2(94nm)/TiO2(60nm)双层减反射膜进行了优化设计,优化后硅太阳电池的短路电流和效率分别提高了2.1%和1.4%.  相似文献   

10.
空间高效硅太阳电池减反射膜设计与数值分析   总被引:6,自引:1,他引:6  
结合AM0太阳光谱特性对空间硅太阳电池的减反射膜进行了设计分析,得到了最小反射时的最佳膜厚.分别讨论了单、双、三层减反射膜厚度变化对反射率的影响,并对有钝化层的Si O2 (94 nm) / Ti O2 (6 0 nm)双层减反射膜进行了优化设计,优化后硅太阳电池的短路电流和效率分别提高了2 .1%和1.4 % .  相似文献   

11.
Reported are the results of reduction the bending of thin crystalline silicon solar ceils after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell. Theory and experiments showed that the bending of the cell is changed with its thickness of suhstrate, the thinner cell, the more serious bending. The bending of the cell is decreased with the thickness decrease of the back contact paste. The substrate with the thickness of 190μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste, and the minimum bend is 0.55 mm which is reduced by52%.  相似文献   

12.
利用传递矩阵法(TMM)优化设计多种介质膜材料的单层、双层增透膜结构。利用Silvaco软件的ATLAS器件仿真模块建立基于优化增透膜结构的二维晶硅太阳电池结构。对比分析了具有不同单层、双层增透膜结构的晶硅太阳电池的光谱响应情况。结果表明:在200~1100 nm波长范围内,由多种不同介质材料组成的双层增透膜比单层增透膜具有更小的光反射损耗;双层增透膜结构可有效降低晶硅太阳电池的光谱响应损耗,且性能优于单层增透膜情况。其中MgF2/ZnS双层增透膜减反效果最好,对380~1000 nm波长范围的入射光,可将上表面光反射率降低到5%以下。  相似文献   

13.
微晶硅(μc—Si:H)是国际公认的新一代硅基薄膜太阳能电池材料。综述了微晶硅的基本特性,器件质量级材料的表征参量,材料的生长技术,微晶硅在太阳电池中的应用及其发展前景。  相似文献   

14.
对甚高频等离子体增强化学气相沉积技术制备的微晶硅薄膜太阳电池进行了研究.喇曼测试结果显示:微晶硅薄膜太阳电池在p/i界面存在着一定的非晶孵化层.孵化层的厚度随硅烷浓度的增加或辉光功率的降低而增大.可以通过适当的硅烷浓度或适当的辉光功率来降低孵化层的厚度.  相似文献   

15.
The preparation,current status and trends are investigated for silicon thin film solar cells.The advantages and disadvantages of amorphous silicon thin film,polycrystalline silicon thin film and mono-crystalline silicon thin film cells are compared.The future development trends are pointed out.It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.  相似文献   

16.
陈健  王庆康  李海华 《半导体光电》2011,32(1):24-29,33
在硅薄膜太阳电池中,灵活的光学设计可以实现表层的零反射损耗,增大吸收层中光的透射率,从而提高薄膜太阳电池的光收集能力。在薄膜太阳电池吸收层表面设计了矩形介质光栅。利用严格耦合波理论和模态传输理论研究了光栅结构参数对反射率的影响。考虑到AM1.5 G太阳能光谱和a-Si的吸收光谱,光栅参数进一步优化。由于微加工的误差,使得矩形光栅变成梯形光栅,必然会影响硅薄膜太阳电池表面反射率。研究结果表明,长周期光栅同样可以实现低反射率,在工艺上也容易实现。采用梯形光栅可进一步降低表面反射率,并且在太阳光入射角为-40°~+40°的范围内保持在6%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号