首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
13C Nuclear magnetic resonance (NMR) spectra of 104 oil samples were obtained and analyzed in order to study the use of this technique for routine screening of virgin olive oils. The oils studied included the following: virgin olive oils from different cultivars and regions of Europe and north Africa, and refined olive, “lampante” olive, refined olive pomace, high-oleic sunflower, hazelnut, sunflower, corn, soybean, rapeseed, grapeseed, and peanut oils, as well as mixtures of virgin olive oils from different geographical origins and mixtures of 5–50% hazelnut oil in virgin olive oil. The analysis of the spectra allowed us to distinguish among virgin olive oils, oils with a high content of oleic acid, and oils with a high content of linoleic acid, by using stepwise discriminant analysis. This parametric method gave 97.1% correct validated classifications for the oils. In addition, it classified correctly all the hazelnut oil samples and the mixtures of hazelnut oil in virgin olive oil assayed. All of these results suggested that 13C NMR may be used satisfactorily for discriminating some specific groups of oils, but to obtain 100% correct classifications for the different oils and mixtures, more information than that obtained from the direct spectra of the oils is needed.  相似文献   

2.
13C NMR spectra of oil fractions obtained chromatographically from 109 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in the classification of vegetable oils and to compare the results with the NMR analysis of complete oils. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; “lampante” olive, refined olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils; and mixtures of virgin olive oils from different geographical origins. Oils were divided into two sets of samples. The training set (98 samples) was employed to select the variables that resulted in significant discrimination among the different oil classes. By using stepwise discriminant analysis, more than 98% of correct validated assignments were obtained; these results were confirmed when applied to the test set (11 blind samples). Results suggest that the use of oil fractions considerably increases the discriminating power of NMR in the analysis of vegetable oils.  相似文献   

3.
A quantitative method was established to determine the presence and composition of mono-, di-, and triglycerides of olive oils of superior gradevia 13C NMR. The total diglyceride content and the ratio ofsn-1,2- andsn-1,3-diglycerides in extra virgin oils extracted from different olive cultivars were correlated with maturity. The correlation can be applied to identify the oils by variety. No monoglycerides were detected in the oils examined.  相似文献   

4.
Six olive oils extracted from the cultivars Arbequina, Arbosana, Coratina, Frantoio, Koroneiki, and Picual from 2017 and 2018 harvests, cultivated in Pinheiro Machado, Rio Grande do Sul, Brazil, are evaluated for standard oil composition parameters and bioactive constituents (pigments, tocopherols, and phenolic compounds). Multivariate principal component analysis (PCA) and univariate ANOVA and Fisher's LSD test are used to verify the effect of cultivar and harvest year on oil composition. Olive oil composition met extra virgin olive oil (EVOO) standard parameters and is influenced by both cultivar and harvest year. EVOO produced in 2018 has greater chlorophyll, caffeic acid, ligstroside aglycone, hydroxyoleuropein aglycone, syringic acid, and hydroxytyrosol acetate contents than the EVOOs from 2017. Linoleic acid, ferulic acid, ligstroside aglycone, and hydroxytyrosol acetate are the variables whose contents most contributed to the differentiation of oils by cultivar in both harvest years. Chemical characterization analyses allow for the differentiation of oil composition based on harvest year and cultivar. Metabolic quality data obtained here support the establishment of a local EVOO profile and the compounds that most contributed to treatment differentiation may serve as markers that can be utilized in determining origin, cultivar, and harvest year. Practical Applications: Olive production in Brazil is recent and is based on European cultivars which have not been bred for the local environmental conditions. Therefore, the measurement of olive oil metabolic quality will determine cultivar adaptability to local edaphoclimatic conditions as well as assist in the establishment of a standard of identity for the product and promote the development of its market. Olive oil produced in Southern Brazil shows high quality, and is especially rich in phenolic compounds. Although harvest year influences oil composition, oil from both harvests meet EVOO standards and cultivar specific metabolic markers are observed. This study provides the foundation for olive producers in Southern Brazil to seek authentication of the geographical origin of olive oil.  相似文献   

5.
Despite the fact that Italy holds the most important olives heritage in the world, with about 800 cultivars, most of them are still underestimated, in particular those from Abruzzo, a region located in the center of the peninsula. The aim of this work is to study the changes in quality parameters of olive fruits and related oils of two autochthonous Abruzzo olive cultivars, Tortiglione and Dritta during ripening (from September to November 2017). Both cultivar and ripening time affect the chemical parameters of olive fruits. Results highlight an increasing trend of the oil content with final values, based on fresh matter, of 38.7 ± 0.3% and 38.1 ± 0.9% for Tortiglione and Dritta, respectively. Olive oils chemical composition is also affected by ripening time and cultivar, with Tortiglione oils resulting generally richer than Dritta oils; on the first sampling time (30th of October) values for total phenolic content, antioxidant activity, and chlorophylls are 803.8 ± 68.2 mg gallic acid equivalent kg−1, 2.7 ± 0.5 mmol trolox equivalent kg−1, and 30.8 ± 1.6 mg pheophytin a kg−1, respectively. Tocopherols seem to be more affected by ripening time than by cultivar, in particular for Dritta. Practical Application : The results on Abruzzo minor olive cultivars indicate that olive fruits and olive oil composition are strongly influenced by both cultivar and ripening time, giving rational indications about the optimal cultivar specific harvesting time and opening interesting opportunities for olive oil producers in a perspective of sustainable production to obtain high quality fruits and oils. The research provides detailed information about Tortiglione and Dritta olive cultivar, useful in the global context of revaluation of Italian minor olive varieties.  相似文献   

6.
The present study focuses on the olefinic region of the 13C nuclear magnetic resonance (13C NMR) spectrum of virgin olive oil which shows 12 peaks resonating between 127.5 and 130 ppm. These peaks are assigned to the most abundant unsaturated fatty acid moieties of the olive oil, oleic and linoleic acids, which are present in α and β positions of the glycerol backbone. With the use of an internal reference pyrazine, the 12 peaks were integrated and their areas were expressed in mmol/g of virgin olive oil. The intensities of the 12 observed peaks were affected when an authentic virgin olive oil was mixed with a seed oil. This observation was used to develop a semiquantitative method to detect adulteration of virgin olive oil by other oils based on 13C NMR spectroscopy.  相似文献   

7.
Distortionless enhancement by polarization transfer (DEPT) pulse sequence was used to set up a quantitative high-resolution 13C nuclear magnetic resonance (NMR) method to discriminate olive oils by cultivars and geographical origin. DEPT pulse sequence enhances the intensity of NMR signals from nuclei of low magnetogyric ratio. The nuclear spin polarization is transferred from spins with large Boltzmann population differences (usually protons) to nuclear species characterized by low Boltzmann factors, e.g., 13C. The signal enhancement of 13C spectra ensures the accuracy of resonance integration, which is a major task when the resonance intensities of different spectra must be compared. The resonances of triglyceride acyl chains C n:0, C18:1, C18:2, and C18:3, were also assigned. Multivariate analysis was carried out on the 35 carbon signals obtained. By using variable reduction techniques, coupled with standard statistical methods—partial least squares and principal components analysis—it was largely possible to separate the samples according to their variety and region of origin. With one problem variety removed, 100% prediction of the three remaining varieties was achieved. Similarly, by using the three regions with greatest representation in the data, all but one of a test set of 34 samples were correctly predicted. Thus, the composition of olive oils from different cultivars and of different geographical origin were compared and successfully studied by multivariate analysis. These considerations in conjunction with the structural elucidations of triglyceride molecules demonstrated that 13C NMR is among the most powerful techniques yet described for analysis of olive oils.  相似文献   

8.
One hundred nine oil samples were separated chromatographically to obtain oil fractions with a decreased TAG content but with enhanced levels of the minor components that define oil genuineness and quality. The oils, which included virgin olive oils from different cultivars and regions of Europe and north Africa and refined olive, “lampante” olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils, were fractionated on a silica gel column with hexane/diethyl ether as the mobile phase eluent. The method was highly reproducible, and the fraction obtained contained about 15% unmodified TAG and 85% polar compounds, which included polymeric TAG, oxidized TAG, DAG, MAG, and FFA, in addition to other minor polar components of the oils. The presence of these compounds, in an enriched fraction, should provide information about the thermal, oxidative, and hydrolytic alterations of the oils, as well as many compounds of interest in determining oil genuineness. The results indicate that these fractions can provide more information than the original oils for NMR or other spectroscopic studies used in the determination of oil quality.  相似文献   

9.
In this work, a multidisciplinary approach for the evaluation of extra virgin olive oil traceability (geographical provenience and botanical differentiation) is presented. Conventional techniques such as major chemical component determination (triacylglycerols, TAG and fatty acids) and other novel approaches as stable isotopic ratio (13C/12C in combination with 18O/16O) and thermal properties obtained from cooling curves and their deconvoluted peaks by means of differential scanning calorimetry were compared. Fifty‐three samples from different Italian regions, diverse cultivars, and two Mediterranean areas (Italy and Croatia) were analyzed with all the three techniques. The oils exhibited different values especially for δ18O and thermal properties of the deconvoluted peaks of crystallization according to Italian regions and/or cultivars. Data were treated by means of linear discriminant analysis inserting all parameters as predictors in models where the potentiality to discriminate oils was tested. All models revealed a good resolution among categories with selected TAG, δ18O values, and thermal properties of the deconvoluted peak set at the highest temperature exhibiting the highest weight for the discriminant functions. These findings could give strength to the utilization of new analytical techniques supporting those traditionally employed, also sustained by proper chemometric procedures, as suitable for the resolution of extra virgin olive traceability. Practical applications: Consumers' awareness of extra virgin olive oil traceability has recently increased the interest for new methods that can assess its geographical and botanical origins and new findings in this sector represent a key factor affecting the purchases in non‐producer countries. Multidisciplinary approaches supported by chemometric procedures enable the building of large databases and classification models for the determination of the provenience of extra virgin olive oil.  相似文献   

10.
The kernel oil content, kernel FA and TAG composition, kernel moisture content, and kernel weight as well as fruit weight of three almond cultivars (Achaak, Mazetto, and Perlees) were monitored during the maturation of kernels. Lipid fractions of all almond samples were extracted using a mixture of chloroform and methanol. FAMF and TAG contained in these fractions were analyzed by GC and HPLC, respectively. The ratio of kernel to fruit weight appears to be a good indicator of almond kernel development. The total lipid content of developing almond kernels exhibited a sigmoidal pattern with time, similar to seeds and kernels of other higher plants; the cultivar Achaak showed a higher rate of lipid accumulation. The proportion of eleic acid (0) dominated at the later stage of maturation for all three almond cultivars. Although there was no significant difference in the FA composition for the three cultivars studied, marked differences were observed in their TAG profiles. Ten TAG species identified were LLL, LLO, LnOO, LOO, LOP, PLP, OOO, POO, POP, and SOO, where L represents linoleic acid; Ln, linolenic acid; P, palmitic acid; and S, stearic acid. The difference in the TAG profile can be useful for distinguishing various cultivars. The oil of Mazetto cultivar kernes exhibited a TAG composition comparable to that of olive oil.  相似文献   

11.
A characterization study of the main olive oil cultivars of southwest Spain (Picual, Arbequina, and Verdial) has been performed in order to establish logistic regression models. Several quality characteristics (free acidity, peroxide value, K232, K270, oxidative stability index) and chemical data (fatty acids, sterols, erythrodiol–uvaol composition) were measured. Logit regressions were used to evaluate the correlation of the parameters and to create models that allow saving costs on identifying oils as Arbequina, Picual, or Verdial type. Multiple logit regression models were developed: one for Arbequina, three models for Picual, and two models for Verdial cultivar, allowing in this way to minimize the cost for classifying oil samples. Practical application: The olive oil marketing is increasingly focused on the chemical differentiation and characterization of the product because the chemical composition of these virgin oils is responsible for their valuable sensory and nutritional properties. Here we present a characterization study (quality characteristics and chemical data) from the main olive oil cultivars of southwest Spain, Picual, Arbequina, and Verdial, as a first step for the traceability of these three types of monocultivar virgin olive oils. The results may be used as a training to create models for other olive oil cultivars.  相似文献   

12.
The suitability of a recently proposed method based on ethanolysis with immobilized Candida antarctica lipase for regiospecific analysis of oils containing long-chain PUFA such as [PA and DHA has been evaluated using selected marine oils and regio-isomerically enriched synthetic TAG substrates. 1,3-Regios-electivity of the lipase was enhanced when the ethanolysis was conducted in a high excess of ethanol, typically 10–50 times by weight of the oil. This enabled the reaction to be conducted on a milligram scale. However, irrespective of the ethanol-to-oil ratio, C. antarctica lipase released FA from TAG at different rates depending on the degree of unsaturation and/or chain length of the FA. Differences in lipolysis rates were particularly significant for EPA and DHA, with EPA released faster than DHA. Although DHA can be measured with reasonable accuracy by ethanolysis with C. antarctica, the method requires further optimization before it can be adopted for reliable regiospecific analyses that are as accurate as those obtainable by 13C NMR analysis for all major FA occurring in oils rich in long-chain PUFA.  相似文献   

13.
Tocopherols are compounds with high biological activity, beneficial for human health that can be found in vegetable oils like olive oil, contributing for its resistance to oxidation. In this work, the tocopherol contents of olive oils extracted from centenarian olive trees of six cultivars (cvs. Lentisca, Madural, Rebolã, Redondal, Verdeal, and Verdeal Transmontana) were evaluated during five consecutive crop seasons (2013–2017). Three tocopherol isoforms (α-, β- and γ-tocopherols) were detected in all analyzed olive oils, and their content varied significantly with the cultivar and year of production. The highest amounts were found in cv. Lentisca (456 ± 122 mg/kg olive oil), while the lowest were observed in cv. Verdeal (179 ± 45 mg/kg olive oil). Crop year was the most influential factor, with the highest contents observed in 2013 and lowest in 2014. Principal component analysis and hierarchical clustering analysis helped differentiate olive oils according to cultivar or production year. These data suggest that tocopherol composition may serve as a chemical marker to distinguish the subject cultivar olive oils from centenarian trees either by olive cultivar or by crop year, being some cultivars identified as potential candidates for guaranteeing the production of olive oils rich in these compounds.  相似文献   

14.
Extra virgin olive oils were extracted from six different major olive cultivars (Gemlik, Ayvalik, Domat, Akhisar, Memecik, Arbequina) cultivated in the Aegean region of Turkey. Fatty acid, sterol and tocopherol compositions were analyzed and the results were compared by multivariate statistical analysis. Olive samples were collected from the same orchard in order to limit the contribution of parameters such as climate, soil quality and agricultural practices to the total variance of chemical composition of olive oils. Principal component analysis (PCA) showed that cultivars can be clearly distinguished on the basis of fatty acid and sterol composition. It is of interest to note that palmitoleic acid content of Arbequina, a Spanish cultivar, is significantly (p < 0.05) higher than the local Turkish cultivars in question and it is the only olive sample whose palmitoleic acid concentration is higher than that of the stearic acid concentration, exhibiting a divergent composition from the local Turkish cultivars. β‐Sitosterol and Δ5‐avenasterol contents of the oils are significantly correlated (r = ?0.989, p < 0.05) and this results in a discriminative axis on the PCA loading plot. Tocopherol composition was relatively insufficient in discriminating the olive varieties. Regarding tocopherol compositions Gemlik cultivar is distinguished from other cultivars with its γ‐tocopherol content, which is in average two times higher than that of other cultivars. The result of the present compositional study provides important data which can be used for olive oil authenticity studies in Turkey.  相似文献   

15.
In 2004, the Corsican producers of olive oils obtained a French protected designation of origin (PDO) “huile d'olive de Corse”, but up to now specifications of Corsican oil production do not clearly indicate the oil attributes related to the territory of production. That is why the fatty acid and triacylglycerol (TAG) compositions of olive oils from the nine main cultivars used to produce oils under PDO were determined and related to the olive variety. The results showed (i) that the nine cultivars covered only four olive varieties, as revealed by random‐amplified polymorphic DNA markers, (ii) that the lipid composition of oils is strongly dependent on the variety, and (iii) that the lipid composition of the four varieties is completely discriminated on the basis of the proportions of four TAG (OOO, OOL, PoOO, OOL) and one fatty acid (18:0). These results clearly establish the relationships between some characteristics of oils and the area of production (Corsica) for at least three varieties that are originated from Corsica. For the fourth variety, other investigations on minor compounds and on sensory attributes of oils must be undertaken to link some oil traits to the territory of production.  相似文献   

16.
MALDI‐TOFMS and HPLC are two analytical methods that were used to characterize triacylglycerols (TAG) of the Meski, Sayali, and Picholine Tunisian olive varieties. The HPLC chromatograms of the oils showed the presence of 15 TAG species, among which triolein (OOO) was the most abundant (21–48%). In the Sayali cultivar, OOO was the predominant TAG species followed by POO and LOO. However, the minor TAG molecules were represented by LnLO and LnLP. MALDI mass spectra produced sodiated ([M + Na]+) and potassiated ([M + K]+) TAG molecules; only the major TAG were potassiated [OOO + K] ([OOO + K]+, [POO + K]+, and [LOO + K]+). In contrast to the HPLC chromatograms, the MALDI mass spectra showed 13 peaks of TAG. The major peak was detected at m/z 907, which corresponds to OOO with an Na+ adduct. The results from both HPLC and MALDI techniques predict the fatty acid composition and their percentages for each olive variety. Practical applications: TAG are the main components in vegetable oils. These biomolecules determine the physical, chemical, and nutritional properties of the oils. The nutritional benefits of TAG are related to DAG (moderate plasma lipid level) and esterified FA, which are intermediate biosynthetic molecules of TAG. TAG analysis is necessary to discriminate between oils of different origin, since some oils have similar FA profiles. Olive products, oils, and table olives, are the main diet sources of TAG in the Mediterranean countries. In this work, chromatographic and spectrometric methods were used for TAG analysis and characterization of Tunisian olive varieties.  相似文献   

17.
Mono-varietal extra virgin olive oils were micro-extracted from drupes that were selectively collected from 28 trees distributed in five different Southern Italian Apulian areas. Nuclear Magnetic Resonance (NMR) profiles of these oil samples were correlated to the genetic (young green material) and soil (samples collected within the foliage projection) data of the tree of origin. Genetic analysis, performed on the samples using SSRs (Simple Sequence Repeats) by 9 microsatellite loci, confirmed the specific cultivar assignment (among Cima di Mola, Coratina, Ogliarola, and Oliva Rossa cultivars). Chemometric methods applied to 1H-NMR spectroscopic data were used for cultivar and geographical origin discrimination of the studied extra virgin olive oils. Linear Discriminant Analysis (LDA) afforded a high reliability degree for discriminating cultivars (almost 90% of prediction ability), and a good assigning ability for the geographical origin (Ogliarola and Coratina samples used as subsets). Soil analyses were performed for each tree. Regression analysis was applied to soil composition in order to correlate available nutrients and total metals with the content of fatty acids and minor components present in monovarietal extra virgin olive oils. In the case of oleic and linoleic fatty acids, and for some terpenes, B, Cr, Mn, Zn were found to give significant correlations. Zn and Mn were the most significant trace elements for all the correlations found (p < 0.01). The results obtained (genetic, spectroscopic and soil analyses) are discussed as a multidisciplinary approach for setting up a strategy for a cultivar and/or geographic origin certification committed database construction.  相似文献   

18.
The aim of this investigation was to determine the impact of fruit ripening on chemical and sensorial changes in monovarietal olive oils obtained from two important olive cultivars grown in Croatia, Bu?a and ?rna. In Bu?a oils peroxide value, K232 and K270 increased during ripening, while no differences among three ripening stages in ?rna oils were observed. Oils of both cultivars at the later ripening stages had higher free acidity level and lower sensory score followed by mild loss in almost all positive sensory characteristics. Total phenols and antioxidant capacity decreased in Bu?a oils during fruit ripening, while in ?rna oils reached maximum level in purple stage and then progressively decreased in the black ripening stage. Oleic acid level slightly increased during ripening in both cultivar oils. Linoleic acid decreased in Bu?a oils obtained from black fruits while palmitic acid decreased in ?rna oils during ripening. In both monovarietal oils chlorophyll and carotenoids concentrations decreased during ripening. The two cultivars had different course of total aldehydes, total esters and total ketones during ripening, while total alcohols were the highest in oils from purple ripening stage and then decreased as ripening progress. Practical applications: During the ripening, the chemical composition of olive fruit changes influencing the quality grade, oxidative stability, sensory characteristics and nutritional value of the obtained products. The cultivars characterized by a similar trend of ripening process could have different course of chemical and sensorial changes in oil during fruit ripening. Therefore, knowledge about these changes is important for determination of proper harvest time of single cultivar to achieve optimum of its potential regarding desirable characteristics of obtained oil.  相似文献   

19.
In recent years, phenolic acids have received considerable attention as they are essential to olive oil quality and nutritional properties. This study aims to validate a rapid and sensitive method based on ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC–TOF‐MS) for analyzing the phenolic acid content of olive oil and assessing its impact on virgin olive oil (VOO) sensory attributes. Once this method was validated, we used it to evaluate the phenolic acid composition of several Spanish monovarietal virgin olive oils in relation to nine different olive ripening stages. The results obtained confirm that the methodology developed in this study is valid for extracting and analyzing phenolic acids from VOO. The phenolic acid content of the virgin olive oils sampled was proven to be influenced by the type of cultivar and olive harvest date. Therefore, phenolic acids might be used as potential markers for olive oil cultivar or ripening stage. Finally, the data obtained indicate that the sensory properties of VOO may be differently affected by its phenolic acid content depending on the type of cultivar. Practical applications: The method validated in the present study – based on UPLC‐TOF‐MS – allows experts to assess the phenolic acid content of different VOO cultivars (varieties). This application will probably be very useful to the olive oil industry. The reason is that our study revealed that phenolic acids have an impact on the sensory quality of VOO, which is essential to consumer preferences and choice. In addition, there are phenolic acids that are only found in a particular variety of olive oil obtained from fruits at a specific ripening stage. Consequently, phenolic acids could be used as potential markers for olive oil variety and harvest time.  相似文献   

20.
This paper describes an investigation into the usefulness of some instrumental methods (GC, NMR, and DSC) in the detection of adulteration of olive oil with soybean, sunflower, and canola oils (that are relatively cheap oils mixed as adulterants with olive oil). These seed oils were compared with genuine and commercial olive oils, two of which appeared to have been adulterated. It was observed that from among physical and chemical indices, the iodine value and the refractive index in the two olive oil samples (named A and B) were significantly higher (P < 0.01) than in the reference (genuine) olive oil, both values being above standard limits established for olive oil. On the other hand, fatty acid (FA) profiles in these two samples exhibited higher amounts of linolenic and linoleic acids (5.34 and 39.92%, 6.38 and 54.42%, 0.79 and 12.88% for A, B and genuine olive oils respectively) but significantly lower amounts of oleic acid (30.07, 21.72 and 67.86%, respectively). The number and intensity of signals observed using 1H NMR indicated that the peaks numbered 2 and 7 were useful in the determination of olive oil purity. Because of higher linolenic and linoleic acid contents in samples A and B, the intensity and integrated areas for these two signals were higher than those for other olive oil samples in which signal 2 was not observed and signal 7 had a very low intensity. Satisfactory results were achieved from quantitation of DSC parameters. The results show that due to increased unsaturated FAs in samples A and B and the consequent changes in triacylglycerol profiles, offset crystallization temperature and onset melting temperature in these two olive oils differed from those of the reference and clearly shifted to lower values. Crystallization and melting curves were similar to the corresponding curves observed for soybean and sunflower oils in terms of shape and number of peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号