首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A relaxor ferroelectric material, 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) with a pyrochlore-free phase, was prepared by using one-step calcination in the present study. The 0.9PMN-0.1PT powder with the pure perovskite phase was prepared successfully from a mixture of the PMN precursor and the crystalline PT by heating for 2 h at temperatures greaterthan equal to750°C. The PMN precursor was synthesized by adding an aqueous Mg(NO3)2 solution, rather than MgO, to the alcoholic slurry of PbO and Nb2O5. The 0.9PMN-0.1PT powder sintered to >96% relative density via heat treatment for 2 h at temperatures of 900°-1200°C. The highest room-temperature dielectric constant (epsilonrt) was 24700 at 1 kHz for the samples that were sintered at 1100°C; however, the samples that were sintered at 900°C still had epsilonrt values of 22600 at 1 kHz.  相似文献   

2.
Hot Pressing of Tantalum Carbide With and Without Sintering Additives   总被引:1,自引:0,他引:1  
Densification of tantalum carbide (TaC) was studied by hot pressing at temperatures ranging from 1900° to 2400°C with and without sintering additives. Without sintering additives, the relative density increased from 75% at 1900°C to 96% at 2400°C. A microstructural examination showed no observable grain growth up to 2300°C. Densification was enhanced with carbon (C) and/or B4C additions. TaC with a 0.78 wt% C addition achieved a relative density of 97% at 2300°C. Additions of 0.36 wt% B4C or 0.43 wt% B4C and 0.13 wt% C increased the relative density to 98% at 2200°C, accompanied by rapid grain growth at 2100°C and higher temperatures.  相似文献   

3.
Stoichiometric K-fluorrichterite (Glass A) and the same composition with 2 mol% P2O5 added (Glass B) were prepared and then heat-treated isothermally from 550°–1000°C with 50°C intervals. Samples were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The biaxial flexural strength and indentation fracture toughness of heat-treated glass specimens were also determined for both materials. XRD traces and TEM images showed similar phase evolution and fine microstructures for both systems at ≤950°C, with mica and diopside reacting with residual glass to form K-fluorrichterite as the temperature was increased from 650°C. However, in Glass B, fluorapatite was also present at >800°C. In contrast, coarser microstructures were observed at 1000°C, with larger K-fluorrichterite (20 μm) and enstatite (10 μm) crystals in Glasses A and B, respectively. The highest fracture toughness (2.69 ± 0.01 MPa·m1/2) and biaxial strength (242.6 ± 3.6 MPa) were recorded for Glass B heat-treated at 1000°C. This was attributed to the presence of enstatite coupled with an interlocked lath-like crystalline microstructure.  相似文献   

4.
Binary oxide spinels composed of Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, and Zn were synthesized. Electrical conductivity was measured in air at 500°–800°C. Thermal expansion was measured from room temperature to 1000°C. Ferrite spinels have thermal expansion coefficients of 11–12 ppm/K, compared with 7–9 ppm/K for other spinels except Cu–Mn and Co–Mn which show anomalous behavior. The highest electrical conductivity among transition metal spinels was found for MnCo2O4 (60 S/cm at 800°C) and Cu1.3Mn1.7O4 (225 S/cm at 750°C).  相似文献   

5.
TiC/Ni3Al composites were prepared using a simple melt-infiltration process, performed at either 1300° or 1400°C, with the Ni3Al content varied over the range of 8–25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22°C increased as the Ni3Al content increased (i.e., ∼1100 MPa at 20 vol% Ni3Al), with the highest strengths being observed for composites processed at 1300°C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to ∼1000°C. As with the yielding behavior of the Ni3Al alloy used, a maximum in composite strength (∼1350 MPa) versus temperature was observed; this occurred at 950°C, which is ∼300°C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1135°C, and the yield stress was dependent on the applied loading rate.  相似文献   

6.
The effects of thermal exposure on the strengths of Nextel™ 550 and 720 tows, bare and coated with carbon, were determined by room-temperature tensile testing of single filaments extracted from tows that had been exposed to different thermal environments (i.e., air or vacuum) at temperatures from 550° to 1400°C. The results help define the allowable composite processing conditions when using these tows. A 28% drop in the strength of Nextel 550 filaments occurred after a thermal exposure at 1100°C for 2 h in air. After an exposure of 1300°C/2 h/air, a strength degradation of ∼47% resulted. Filaments exposed above 1100°C under vacuum showed more severe strength degradation than filaments exposed in air. The observed strength degradation may stem from a combination of phase transformations of the alumina, the onset of mullite crystallization, and/or exaggerated mullite grain growth. Strength after heat treatment under vacuum at 1050° and 1150°C did not deteriorate as rapidly as after heat treatment under vacuum between 950° and 1050°C or between 1150° and 1250°C. This may be a result of the competition between healing of flaws by the amorphous silica and its evaporation (leading to an increase in its viscosity or loss) and/or densification of the filaments. Nextel 720 filaments exhibited about 9% strength loss after an exposure at 1100°C/2 h/air. The filaments maintained 75% of their strength after a 1300°C/2 h/air heat treatment. The observed strength degradation may stem from thermal grooving, grain growth, and/or annealing of the mullite subgrain boundaries. Thermal exposure of >10 h at 1300°C was required to produce measurable grain growth. Strength loss between 1200° and 1300°C (air heat treatment) was not as great as between 1100° and 1200°C or 1300° and 1400°C.  相似文献   

7.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

8.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

9.
Near-stoichiometric mullite (3Al2O32SiO2) that contained small amounts of calcium and magnesium was exposed to pure dry hydrogen gas at elevated temperatures. Exposure temperatures were 1050° and 1250°C, and exposure times were up to 500 h. Preferential attack of the aluminosilicate glass that was present in the grain boundaries of the mullite occurred after 125 h at 1250°C. Hydrogen scrubbing of the silica from the glassy grain boundaries and the mullite grains yielded a porous alumina-rich surface. The room-temperature strength increased after short exposure times at 1250°C (up to 125 h) and then decreased by 53% after exposure for 500 h. At 1050°C, all exposure times (25-500 h) decreased the strength. The room-temperature strength of mullite decreased 22% after 500 h in hydrogen at 1050°C. We also observed a rapid 25% strength loss after short exposure times at 1050°C, which was attributed to the calcium/hydrogen-assisted crystallization of the glassy grain-boundary phase.  相似文献   

10.
Definite increases in the Curie point (TC) of undoped and lanthanum- (La-) doped (<0.5 at.%) barium titanate (BaTiO3) ceramics sintered at elevated temperatures in the range of 1300°-1450°C were observed. Both undoped and 0.3 at.% La-doped BaTiO3 (chosen as a typical doping concentration to yield semiconducting materials) ceramics showed almost the same TC behavior; their TC values increased by ∼3.5°C as the sintering temperature was increased from 1300° to 1450°C. Semiconducting 0.3 at.% La-doped materials increased in room-temperature bulk resistivity and TC with increased sintering temperature. The bulk resistivity of the La-doped materials, which was obtained from complex impedance analysis, increased from ∼2 omega cm for the material sintered at 1350°C to ∼6 ω cm at 1450°C. The phenomenon of bulk resistivity increase with sintering temperature was observed in the materials with a doping concentration of ≥ 0.2 at.% La, but was not observed in those doped with <0.2 at.% La. The mechanisms of TC and the bulk resistivity increase observed in the present materials with increased sintering temperature are discussed based on various models found in the literature, particularly in terms of the defect chemistry in semiconducting BaTiO3 ceramics and the influence of liquid phases present during sintering.  相似文献   

11.
Processing Temperature Effects on Molybdenum Disilicide   总被引:1,自引:0,他引:1  
A series of MoSi2 compacts were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500° to 1800°C, MoSi2 had a constant 67% transgranular fracture and linearly increasing grain size from 14 to 21 μm. Above 1800°C, the fracture percentage increased rapidly to 97% transgranular at 1920°C (32-μm grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi2 processed at 1600°C had the highest fracture toughness and hardness values of 3.6 MPa.m1/2 and 9.9 GPa, respectively. The effects of SiO2 formation from oxygen impurities in the MoSi2 starting powders and MoSi2–Mo5Si3 eutectic liquid formation were studied.  相似文献   

12.
Europium oxide of 99.7% purity was compacted into small bars and pellets which were fired at temperatures from 1050° to 1700°C. for 2 to 120 hours in atmospheres that were oxidizing, mildly reducing (open furnace), or strongly reducing. It was found that (1) europium oxide compacts fired in oxygen for 2 hours at 1500°C. bad attained a density of 90% of theoretical and were stable in boiling water, (2) compacts fired under mildly reducing conditions at 1500°C. for 2 hours had attained a density of 84% of theoretical and disintegrated in boiling water, and (3) those fired similarly in a hydrogen atmosphere began to fuse at 1500°C. The linear thermal expansion of the compacts fired at 1500°C. in the open furnace was 10.5 x 10-6in. perin. per°C. between 0° and 1000 °C. and their molar specific heat between 0° and 800°C. was 33.3 cal. Careful investigation of the structural changes occurring in europium oxide with rising temperature revealed that (1) the low-temperature (body-centered cubic) form inverts slowly to the high-temperature form at approximately 1050°C., (2) the high-temperature form has monoclinic symmetry, and (3) it does not revert readily to the cubic form; its theoretical density was calculated to be 8.18 gm. per cm.3.  相似文献   

13.
The microstructural evolution and grain-boundary influence on electrical properties of Ce0.90Gd0.10O1.95 were studied. The nanoscale powders synthesized from a semibatch reactor exhibited 50% green density and 92% sintering density at 1200°C (∼200°C lower than previous studies). Impedance spectra as a function of temperature and grain size were analyzed. The Ce0.90Gd0.10O1.95 with finest grain size possessed highest overall grain-boundary resistance; this contribution was eliminated at temperatures >600°C, regardless of grain size. The grain conductivity was independent of grain size and was dependent on temperature with two distinct regimes, indicative of the presence of Gd'Ce− V o∘∘ complexes that dissociated at a critical temperature of ∼580°C. The activation energy for complex dissociation was ∼0.1 eV; the value for the grain-boundary was ∼1.2eV, which was size independent.  相似文献   

14.
Two types of ceramic coatings were formulated for application to Inconel to give ( a ) the highest possible emittance from room temperature to about 1200°C. and ( b ) the highest possible reflectance to solar energy (0.4 to 2.0 μ) while having high emissivity in the infrared from 25° to 700° C. or higher. Both types of coatings were formulated from a modified barium silicate frit. This frit was opacified with various black spinels to give the ( a )-type enamels having total normal emittances ranging from 0.74 to 0.87. The ( b )-type enamels were made with equal parts of stannic and eerie oxides as opacifiers. At thicknesses greater than 5 mils, these had hemispherical reflectances varying between 0.67 and 0.62 at wave lengths of 0.6 to 2.6 μ respectively, together with total emittances of 0.75 at 400°C. and 0.60 at 800° C.  相似文献   

15.
Conventional sintering of (Na1− x K x )0.5Bi0.5TiO3 (abbreviated as NKBT x , x =18–22 mol%) lead-free piezoelectric ceramics was investigated to clarify the optimal sintering temperature for densification and electrical properties. Both sintered density and electrical properties were sensitive to sintering temperature; particularly, the piezoelectric properties deteriorated when the ceramics were sintered above the optimum temperature. The NKBT20 and NKBT22 ceramics synthesized at 1110°–1170°C showed a phase transition from tetragonal to rhombohedral symmetry, which was similar to the morphotropic phase boundary (MPB). Because of such MPB-like behavior, the highest piezoelectric constant ( d 33) of about 192 pC/N with a high electromechanical coupling factor ( k p) of about 32% were obtained in the NKBT22 ceramics sintered at 1150°C.  相似文献   

16.
Thermal expansion of Y4A14O9 ceramics prepared at 1600° and 1800°C was measured from room temperature to 1500°C in air. Volume changes at the phase transition of Y4A12O9, along with thermal hysteresis, were observed around 1400°C. The volume of the high-temperature phase was about 0.5% lower than that of the low-temperature phase. The hysteresis width for the sample prepared at 1600°C was 56°C, wider than that (14°C) for the sample prepared at 1800°C. The averages of phase transition start temperatures on heating and on cooling for these samples were, however, almost the same at 1377°C. The phase transitions did not occur at fixed temperatures, and the proportions of the high-temperature phase and the low-temperature phase did not change with time as long as the temperature remained constant ( athermal character). The sample prepared at 1800°C also showed another thermal hysteresis behavior from room temperature to about 1000°C.  相似文献   

17.
Cyclic-Fatigue Behavior of SiC/SiC Composites at Room and High Temperatures   总被引:2,自引:0,他引:2  
Tension-tension cyclic-fatigue tests of a two-dimensional-woven-SiC-fiber-SiC-matrix composite (SiC/SiC) prepared by chemical vapor infiltration (CVI) were conducted in air at room temperature and in argon at 1000°C. The cyclic-fatigue limit (107 cycles) at room temperature was ∼160 MPa, which was ∼80% of the monotonic tensile strength of the composite. However, the fatigue limit at 1000°C was only 75 MPa, which was 30% of the tensile strength of the composite. No difference was observed in cyclic-fatigue life at room temperature and at 1000°C at stresses >180 MPa; however, cyclic-fatigue life decreased at 1000°C at stresses < 180 MPa. The fracture mode changed from fracture in 0° and 90° bundles at high stresses to fracture mainly in 0° bundles at low stresses. Fiber-pullout length at 1000°C was longer than that at room temperature, and, in cyclic fatigue, it was longer than that in monotonic tension. The decrease in the fatigue limit at 1000°C was concluded to be possibly attributed to creep of fibers and the reduction of the sliding resistance of the interface between the matrix and the fibers.  相似文献   

18.
The melting, eutectic, peritectic, solidus, and liquidus temperatures in the system Zr-O have been measured directly by a simple optical pyrometric technique requiring only a few hundred milligrams of sample. The saturation solubility of oxygen in α-Zr( s ) between 1270° and 1980°C and the lower phase boundary of the ZrO2α phase between 1900° and 2400°C have been measured by an isopiestic equilibration method. The oxygen solubility limit in α-Zr( s ) agrees well with previous low-temperature studies and reaches a maximum solubility of 35°1 at.% O at the eutectic temperature, 2065°°5°C. The maximum melting temperature of α-Zr( ss ) is 2130°°10°C and corresponds to a composition of 25°1 at.% O. Both of these temperatures are approximately 150° higher than previously reported. Liquidus compositions above the eutectic temperature were obtained via mass spectrometry from the kinetic behavior of the liquid solution-ZrO2–x( s ) mixture as it approached equilibrium at 2125°°5°C. The lower phase boundary or solidus of the ZrO2–x phase departs appreciably from ideal stoichiometry above 1900°C and smoothly reaches its most reduced composition, 61 at.% (ZrO1.56), near 2300°C. The solidus is retrograde at higher temperatures. The melting temperature of the stoichiometric dioxide is 2710°°15°C.  相似文献   

19.
ZrO2 powder was prepared by a sol–emulsion–gel method at temperatures below 140°C from ZrO(NO3)2· n H2O. The asprepared powder was amorphous, but crystallized into the tetragonal structure by 600°C. The metastable tetragonal powder (600°C) was comprised of ultrafine 4- to 6-nm size particles. On heat treatment, the tetragonal form completely transformed into the monoclinic state at 1100°C. Preliminary studies indicate good sinterability with densities greater than 94% at 1100°C and with a grain size of 0.25 μ.  相似文献   

20.
Nanocrystalline CeO2 powders were prepared electrochemically by the cathodic electrogeneration of base, and their sintering behavior was investigated. X-ray diffraction and transmission electron microscopy revealed that the as-prepared powders were crystalline cerium(IV) oxide with the cubic fluorite structure. The lattice parameter of the electrogenerated material was 0.5419 nm. The powders consisted of nonaggregated, faceted particles. The average crystallite size was a function of the solution temperature. It increased from 10 nm at 29°C to 14 nm at 80°C. Consolidated powders were sintered in air at both a constant heating rate of 10°C/min and under isothermal conditions. The temperature at which sintering started (750°C) for nanocrystalline CeO2 powders was only about 100°C lower than that of coarser-grained powders (850°C). However, the sintering rate was enhanced. The temperature at which shrinkage stopped was 200°-300°C lower with the nanoscale powder than with micrometer-sized powders. A sintered specimen with 99.8% of theoretical density and a grain size of about 350 nm was obtained by sintering at 1300°C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号