首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
荷载横向变位下箱梁顶板与底板的剪滞效应分析   总被引:1,自引:0,他引:1  
不同于以往荷载作用于箱梁的肋板处时剪力滞效应的研究,考虑当荷载不作用在箱梁的肋板处时顶板与底板位移及剪力滞效应的差异,对顶板与底板分设不同的纵向位移差函数,采用二次抛物线作为箱梁翼缘板的纵向位移沿梁宽分布函数,通过能量变分法,研究荷载在顶板横向变位下箱梁顶板与底板的位移,应力及剪力滞效应的变化,根据对于简支箱梁受均布荷载作用下跨中剪力滞效应的计算结果,随着作用在顶板的对称荷载从对称中心向肋板处移动,顶板将经历一个产生负剪力滞效应到无剪力滞效应,再到产生正剪力滞效应的过程。而与此同时底板的剪力滞效应规律受荷载的移动的影响很小,始终保持正剪力滞效应。计算结果与有限元数值模拟结果吻合较好,验证了理论的可靠性,同时也说明当荷载不作用在箱梁的肋板处时,对顶板与底板分设不同的纵向位移差函数的考虑是正确的。  相似文献   

2.
Philippe Jetteur 《Thin》1983,1(3):189-210
A new method for the design of stiffened compression flanges of large steel box girder bridges is presented. It is based, like that presented 10 years ago by Maquoi and Massonet, on the orthotropic plate approach, but the mathematical formulation and its use are more simple. In addition, it allows for account to be taken of a non-uniform stress distribution in the flange and thus enables the analysis of the shear lag effects on the plate buckling. The physical differences between plate buckling under uniform and non-uniform compression, respectively, are clearly shown. Finally it is found that the collapse ultimate state is little influenced by shear lag.  相似文献   

3.
从薄壁箱梁弯曲剪应力、剪切变形与截面纵向位移之间的关系入手,推导了箱梁全截面翼板与腹板纵向位移沿箱室周线的分布函数,据此提出优化的 箱梁全截面剪力滞翘曲广义坐标函数。基于能量变分原理建立了综合考虑全截面剪切变形能的单剪滞位移的弯曲剪力滞控制微分方程组。该微分方程与既有 的箱梁剪力滞理论形式上保持一致,而将翼板剪力滞分析与腹板的弯翘分析统一起来。均布荷载作用下的简支梁与悬臂梁算例分析表明,该算法求得的剪力 滞系数和挠度值与块体元模型吻合良好。与不考虑腹板剪切变形的算法比较,该理论计算的剪力滞系数和挠度计算结果误差更小。  相似文献   

4.
针对传统比拟杆法仅能分析等截面箱梁剪力滞效应的不足,重新推导变截面箱梁加劲杆等效面积及剪力滞效应微分方程,以有机玻璃悬臂梁模型的试验结果检验该文算法的正确性,讨论箱梁梁高、腹板厚度变化对悬臂箱梁剪力滞系数和正剪力滞区段长度的影响,通过分析箱梁顶板和腹板内剪力流沿跨长的分布规律揭示变截面箱梁剪力滞效应弱化的原因。研究发现:悬臂箱梁梁高和腹板厚度的变化会减弱其剪力滞效应,且剪滞效应弱化的原因在于变截面箱梁腹板内剪应力水平的降低;箱梁顶板内水平剪力流沿跨长先增大后减小的变化导致了悬臂箱梁正、负剪力滞现象,同等跨径下变高度悬臂箱梁的正剪力滞区段长度会显著增加,但其剪滞系数将明显减小;工程设计中可以通过调整箱梁梁高和腹板厚度沿顺桥向的变化趋势,尽量让箱梁腹板剪力流水平沿桥跨方向保持不变,避免腹板剪力流水平变化过快以最大程度地减弱箱梁剪力滞效应。  相似文献   

5.
A finite segment model for shear lag analysis   总被引:3,自引:0,他引:3  
A finite segment model is developed to calculate the shear lag effects for box girders with varying depth. Multiple longitudinal displacement functions are used to derive the stiffness matrix and the nodal force vector of the segment element. The shear deformation of the web is taken into consideration. A Perspex glass model of a three-span continuous box girder with varying depth is tested to provide experimental results for verifying the accuracy of the proposed method. The influences of the flange width to span ratio and girder–height ratio upon the shear lag are presented and discussed.  相似文献   

6.
动力响应计算是薄壁箱梁设计中需要考虑的重要问题之一。本文基于Hamilton原理,考虑薄壁截面翼缘的剪力滞效应,推出了均质箱梁在分布动载作用下的控制微分方程和边界条件,采用分离变量法求出了简支均质薄壁箱梁在均布简谐动载下的稳态解。通过数字算例,研究了不同频率动载作用下,结构的动挠度、动应力、剪力滞系数、挠度放大系数和应力放大系数在共振区和非共振区的变化情况,以及与简谐动载相位的关系,分析了剪力滞效应对薄壁箱梁动力响应的影响,为薄壁箱梁的动力设计与计算提供了依据。  相似文献   

7.
采用有限元方法对两种不同类型的汽车荷载作用下箱梁剪力滞效应进行了分析。结果表明:在汽车荷载作用下箱梁的顶板和底板的剪力滞系数都是在荷载作用点处达到最大,在其他截面剪力滞系数较小;不同荷载作用下,箱梁剪力滞系数横向分布规律相似,荷载作用的大小对箱梁剪力滞效应的影响较为明显。  相似文献   

8.
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam. The unique LSB section is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, limited research has been undertaken on the shear buckling behaviour of LSBs with torsionally rigid, rectangular hollow flanges. For the shear design of LSB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements. Therefore finite element analyses were carried out to investigate the elastic shear buckling behaviour of LSB sections including the effect of true support conditions at the junction between their flange and web elements. An improved equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations of Australian cold-formed steel codes. Predicted ultimate shear capacity results were compared with available experimental results, both of which showed considerable improvement to the shear capacities of LSBs. A study on the shear flow distribution of LSBs was also undertaken prior to the elastic buckling analysis study. This paper presents the details of this investigation and the results including the shear flow distribution of LSBs.  相似文献   

9.
In this paper, the moment of inertia requirement of flat-bar longitudinal stiffener of bottom flange in steel box girder is investigated through finite element modeling. The required minimum stiffness for longitudinal stiffeners of box girder flange is given in the AASHTO LRFD Bridge Design Specification and is modified by Yoo. However, this requirement is adopted for T-shape stiffeners. Here, the effect of important parameters on the minimum required moment of inertia of flat-bar stiffener is numerically investigated by examining the anti-symmetric mode of buckling. This study presents the results that are based on 3D finite-element analysis of four hundred hypothetical compression flange models stiffened by varying numbers of flat-bar longitudinal stiffeners with realistic dimensions such as the height of stiffener, the thickness of the compression flange, the number of longitudinal stiffeners and the aspect ratio of plate panel. A new proposed equation for required minimum stiffness of the flat-bar longitudinal stiffeners is derived from nonlinear regression analyses. Beside that the study has taken into account the effect of boundary conditions and the effect of inelastic transition on the critical buckling stress of compression flange. Through the evaluation of a design example, the validity and reliability of the new proposed equation is demonstrated.  相似文献   

10.
In this paper, the ultimate load of thin-walled box beams undergoing limited plastic strain is investigated with consideration of shear lag effect on the basis of the stress–strain relationship of elastic, linearly hardening materials. In the procedure, calculation formulae for strength increase coefficient, flange effective width ratio, critical values of plastic strain and shear lag coefficient are obtained for thin-walled box beams with elastic, linearly hardening materials. In addition, the relationships among the abovementioned parameters and conditions of boundary, load and aspect ratio L/2b (span length/beam width) of the box beams are established in this paper. For illustration, the numerical results of box beams under certain boundary and load conditions are presented and some conclusions are drawn which may offer references for the application of this procedure in structural design.  相似文献   

11.
The mechanical behavior of negative bending moment zone in composite girder is very complex. The nonlinear characteristics due to the cracking of concrete slab need careful studies. In this experimental research, two specimens of steel-concrete composite box girder with inclined webs under hogging moment were cautiously conducted and tested. The relative slips between the steel and concrete, load-displacement relationship, the strain distribution of the steel girder, the reinforcements and the concrete slab, and the cracking behavior of the concrete slab were measured during the tests. The relatively small slips on the surfaces between the concrete slab and the top flange of the steel girder showed the full shear connection composite behavior of the girders. The initial cracking load was compared with the calculation results from linear analysis and nonlinear analysis based maximum strain. The strain of the steel web measured at different positions along the vertical direction showed the establishment of plane section assumption and the variation of neutral axis in the loading process. Moreover, shear lag effect was found in the strain distribution of the bottom flanges. The strain of concrete slab and the crack spacing showed the effect of the longitudinal reinforcement ratio on the cracking behavior of the concrete. The maximum crack width was observed in the loading process and compared with the calculation results according the design codes. The influence of reinforcement ratio on the strain of reinforcement and on the load capacity in serviceability limit state was studied in the context and it was found that the reinforcement ratio play an important role on the crack control of composite girder under hogging moment.  相似文献   

12.
An energy-based method was developed for quantifying shear lag effects in thin-walled flexural members such as box girders, T-beams, and nonrectangular concrete walls. The proposed procedure uses infinite terms of high-order polynomial to describe the uneven longitudinal displacement in the flanges. The series type of approximation resulted in a group of coupled differential equations, for which solution techniques were developed. The proposed variational analysis was compared with the existing least-work solutions and two experimental tests of rectangular box girders in the literature and one of tests of steel box beams in this study. The comparisons indicated that the proposed variational analysis can accurately predict the flange normal stresses in box girders. Solutions were provided for thin-walled flexural members in bridges and buildings under a variety of loadings and boundary conditions to facilitate the implementation of the proposed procedure.  相似文献   

13.
《钢结构》2012,(7):82
对钢箱梁中非弹性剪滞性能进行研究。带翼缘受弯构件中的剪滞效应经常被认为是不均匀的纵向变形和沿翼缘的正应力。弹性剪滞性能被广泛研究并在结构设计中给予考虑,然而对非弹性剪滞涉及较少。带翼缘受弯构件在其极限状态下可能会发生塑性变形,故采用基于最小功的方法来模拟非弹性剪滞性能。在非弹性剪滞模型中,有效模量采用公式表达,泊松比按塑性理论取值。通过两个钢箱梁的试验结果对该分析方法进行验证。经与试验数据对比后表明,所给出的变分法可以精确地得到钢箱梁的塑性正应变分布和变形。  相似文献   

14.
郑文 《山西建筑》2009,35(22):89-91
阐述了剪力滞的基本概念,分析了影响箱梁翼缘有效宽度的因素,探讨了工程中箱梁翼缘有效宽度的计算及应用,以完善箱梁翼缘有效宽度的计算,从而做出更好的设计。  相似文献   

15.
框筒结构在水平荷载作用下的变形由剪切变形和弯曲变形两部分组成,弯曲变形必须考虑正、负剪力滞的影响。本文在框筒柱应力分布和剪力滞分布假定的基础上,取消连续化假定,推导出了框筒结构弯曲变形时柱轴力和侧移的简化计算公式,对影响框筒结构负剪力滞的几个主要因素进行了分析。  相似文献   

16.
王宏伟  吕锦刚  陈保国 《山西建筑》2010,36(14):303-305
根据现场测试结果,分析了曲线箱梁悬臂施工过程中根部截面的应力变化规律,研究结果表明,挂篮的偏心荷载将会在箱梁翼板根部的局部位置产生较大的横向拉应力,甚至引起桥面纵向的开裂;对于曲线梁桥,箱梁两侧的腹板和翼缘板内的应力呈非对称分布,施工过程中应注意施工顺序和施工荷载对结构内力的影响。  相似文献   

17.
山地城市排水干管埋地箱涵由于滑坡导致地基塌陷而成为简支箱涵,支承方式的改变导致管道结构存在破坏风险.为此,文章对简支下小跨高比埋地箱梁进行了模型静力加载试验,分析了小跨高比埋地箱涵在简支条件下的破坏形式、抗剪性能以及剪力滞效应,讨论了现行有关设计规范对于箱涵抗剪承载力计算之不足.研究表明,竖向均布荷载作用下,小跨高比箱...  相似文献   

18.
This study aims to investigate the effects of load height, stepped beam configuration and section compactness on the inelastic lateral buckling strength of doubly and singly stepped I-beams. To study the effects of load height, the loads are situated at three points: at the center of the top flange, at the shear center and at the center of the bottom flange. To check for the effect of stepped beam configuration, beams were stepped either at both top and bottom flanges or at top flange only. Meanwhile, to investigate the effects of section compactness, two sections are analyzed: one section with compact flanges and web and another section with non-compact flanges and a compact web. The loadings are limited to those having an inflection point of zero. To also check the effect of steps, stepped parameters α, β and γ are varied. The buckling strengths of the beams investigated are obtained by conducting nonlinear analysis using the finite element program, ABAQUS. In conducting the nonlinear analysis, the residual stresses and geometric imperfections are taken into consideration to clearly simulate the inelastic behavior of the beams. The results of the analysis would then determine if the location of the loads, configuration of stepped flanges and compactness of flanges have significant effect on the inelastic buckling strength of the stepped beams.  相似文献   

19.
李伟 《山西建筑》2007,33(11):321-322
以某大桥32 m预应力混凝土简支箱梁为例,利用ANSYS有限元分析软件建立三维实体模型,进行恒载、活载作用下剪力滞效应分析,得出剪力滞分布规律及变化特点,对类似箱梁设计具有一定的指导作用。  相似文献   

20.
A method of analysis is presented which enables the effects of shear lag in steel box girders with heavily stiffened flanges to be taken into account quickly and conveniently using hand calculations. The method idealizes the flange as a system of axial load-carrying bar members and shear-carrying sheet members and employs harmonic analysis. It can allow for different stiffener arrangements and gives maximum edge stress values that agree closely with those obtained from the recently published code of practice for design of steel bridges for the type of regular stiffener arrangement assumed by the code. Results are also presented suggesting that the shear lag effects for certain practical stiffener arrangements may be higher than those predicted by the code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号