首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parameterized Proof Complexity   总被引:1,自引:1,他引:0  
We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter (we call such a formula a parameterized contradiction). One could separate the parameterized complexity classes FPT and W[SAT] by showing that there is no fpt-bounded parameterized proof system for parameterized contradictions, i.e., that there is no proof system that admits proofs of size f(k)n O(1) where f is a computable function and n represents the size of the propositional formula. By way of a first step, we introduce the system of parameterized tree-like resolution and show that this system is not fpt-bounded. Indeed, we give a general result on the size of shortest tree-like resolution proofs of parameterized contradictions that uniformly encode first-order principles over a universe of size n. We establish a dichotomy theorem that splits the exponential case of Riis’s complexity gap theorem into two subcases, one that admits proofs of size f(k)n O(1) and one that does not. We also discuss how the set of parameterized contradictions may be embedded into the set of (ordinary) contradictions by the addition of new axioms. When embedded into general (DAG-like) resolution, we demonstrate that the pigeonhole principle has a proof of size 2 k n 2. This contrasts with the case of tree-like resolution where the embedded pigeonhole principle falls into the “non-FPT” category of our dichotomy.  相似文献   

2.
Approximation Algorithms for Connected Dominating Sets   总被引:38,自引:0,他引:38  
S. Guha  S. Khuller 《Algorithmica》1998,20(4):374-387
The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to be either in the dominating set, or adjacent to some vertex in the dominating set. We focus on the related question of finding a connected dominating set of minimum size, where the graph induced by vertices in the dominating set is required to be connected as well. This problem arises in network testing, as well as in wireless communication. Two polynomial time algorithms that achieve approximation factors of 2H(Δ)+2 and H(Δ)+2 are presented, where Δ is the maximum degree and H is the harmonic function. This question also arises in relation to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited or has at least one of its neighbors visited. We also consider a generalization of the problem to the weighted case, and give an algorithm with an approximation factor of (c n +1) \ln n where c n ln k is the approximation factor for the node weighted Steiner tree problem (currently c n = 1.6103 ). We also consider the more general problem of finding a connected dominating set of a specified subset of vertices and provide a polynomial time algorithm with a (c+1) H(Δ) +c-1 approximation factor, where c is the Steiner approximation ratio for graphs (currently c = 1.644 ). Received June 22, 1996; revised February 28, 1997.  相似文献   

3.
Given an n-point metric (P,d) and an integer k>0, we consider the problem of covering P by k balls so as to minimize the sum of the radii of the balls. We present a randomized algorithm that runs in n O(log n⋅log Δ) time and returns with high probability the optimal solution. Here, Δ is the ratio between the maximum and minimum interpoint distances in the metric space. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and in metrics of constant doubling dimension.  相似文献   

4.
There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs. A preliminary version of this paper appeared in the Proceedings of the 13th Annual International Computing and Combinatorics Conference (COCOON), Banff, Alberta, Canada (2007), pp. 394–405. N. Alon research supported in part by a grant from the Israel Science Foundation, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. This paper forms part of a Ph.D. thesis written by S. Gutner under the supervision of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.  相似文献   

5.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

6.
We study local, distributed algorithms for the capacitated minimum dominating set (CapMDS) problem, which arises in various distributed network applications. Given a network graph G=(V,E), and a capacity cap(v)∈ℕ for each node vV, the CapMDS problem asks for a subset SV of minimal cardinality, such that every network node not in S is covered by at least one neighbor in S, and every node vS covers at most cap(v) of its neighbors. We prove that in general graphs and even with uniform capacities, the problem is inherently non-local, i.e., every distributed algorithm achieving a non-trivial approximation ratio must have a time complexity that essentially grows linearly with the network diameter. On the other hand, if for some parameter ε>0, capacities can be violated by a factor of 1+ε, CapMDS becomes much more local. Particularly, based on a novel distributed randomized rounding technique, we present a distributed bi-criteria algorithm that achieves an O(log Δ)-approximation in time O(log 3 n+log (n)/ε), where n and Δ denote the number of nodes and the maximal degree in G, respectively. Finally, we prove that in geometric network graphs typically arising in wireless settings, the uniform problem can be approximated within a constant factor in logarithmic time, whereas the non-uniform problem remains entirely non-local.  相似文献   

7.
The Feedback Vertex Set problem on unweighted, undirected graphs is considered. Improving upon a result by Burrage et al. (Proceedings 2nd International Workshop on Parameterized and Exact Computation, pp. 192–202, 2006), we show that this problem has a kernel with O(k 3) vertices, i.e., there is a polynomial time algorithm, that given a graph G and an integer k, finds a graph G′ with O(k 3) vertices and integer k′≤k, such that G has a feedback vertex set of size at most k, if and only if G′ has a feedback vertex set of size at most k′. Moreover, the algorithm can be made constructive: if the reduced instance G′ has a feedback vertex set of size k′, then we can easily transform a minimum size feedback vertex set of G′ into a minimum size feedback vertex set of G. This kernelization algorithm can be used as the first step of an FPT algorithm for Feedback Vertex Set, but also as a preprocessing heuristic for Feedback Vertex Set.  相似文献   

8.
We study extremal questions on induced matchings in certain natural graph classes. We argue that these questions should be asked for twinless graphs, that is graphs not containing two vertices with the same neighborhood. We show that planar twinless graphs always contain an induced matching of size at least n/40 while there are planar twinless graphs that do not contain an induced matching of size (n+10)/27. We derive similar results for outerplanar graphs and graphs of bounded genus. These extremal results can be applied to the area of parameterized computation. For example, we show that the induced matching problem on planar graphs has a kernel of size at most 40k that is computable in linear time; this significantly improves the results of Moser and Sikdar (2007). We also show that we can decide in time O(k91+n) whether a planar graph contains an induced matching of size at least k.  相似文献   

9.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

10.
Let S be a set of n taxa. Given a parameter k and a set of quartet topologies Q over S such that there is exactly one topology for every subset of four taxa, the parameterized Minimum Quartet Inconsistency (MQI) problem is to decide whether we can find an evolutionary tree inducing a set of quartet topologies that differs from the given set in at most k quartet topologies. The best fixed-parameter algorithm devised so far for the parameterized MQI problem runs in time O(4 k n+n 4). In this paper, first we present an O(3.0446 k n+n 4) fixed-parameter algorithm and an O(2.0162 k n 3+n 5) fixed-parameter algorithm for the parameterized MQI problem. Finally, we give an O *((1+ε) k ) fixed-parameter algorithm, where ε>0 is an arbitrarily small constant.  相似文献   

11.
L. Borzacchini 《Calcolo》1980,17(4):379-384
In this paper we proof a theorem concerning lattice constants and hence three matricial equations for conversion matricesR: if H=ΔRT we have: i)H 3 =I; ii) HT Σ H= Σ; iii)(DH) 2 =I; where Δ,D, and ε are known when we can enumerate all non-isomorphic graphs withn vertices, we know (for Δ and ε) their edge-number and (for ε) the order of their automorphism group.  相似文献   

12.
We consider the problem of fitting a step function to a set of points. More precisely, given an integer k and a set P of n points in the plane, our goal is to find a step function f with k steps that minimizes the maximum vertical distance between f and all the points in P. We first give an optimal Θ(nlog n) algorithm for the general case. In the special case where the points in P are given in sorted order according to their x-coordinates, we give an optimal Θ(n) time algorithm. Then, we show how to solve the weighted version of this problem in time O(nlog 4 n). Finally, we give an O(nh 2log n) algorithm for the case where h outliers are allowed. The running time of all our algorithms is independent of k.  相似文献   

13.
The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem. Namely, we study the problem of deciding whether the profile of a connected graph of order n is at most n−1+k, considering k as the parameter; this is a parameterization above guaranteed value, since n−1 is a tight lower bound for the profile. We present two fixed-parameter algorithms for this problem. The first algorithm is based on a forbidden subgraph characterization of interval graphs. The second algorithm is based on two simple kernelization rules which allow us to produce a kernel with linear number of vertices and edges. For showing the correctness of the second algorithm we need to establish structural properties of graphs with small profile which are of independent interest. A preliminary version of the paper is published in Proc. IWPEC 2006, LNCS vol. 4169, 60–71.  相似文献   

14.
Alon  Zaks 《Algorithmica》2008,32(4):611-614
Abstract. A proper coloring of the edges of a graph G is called acyclic if there is no two-colored cycle in G . The acyclic edge chromatic number of G , denoted by a'(G) , is the least number of colors in an acyclic edge coloring of G . For certain graphs G , a'(G)\geq Δ(G)+2 where Δ(G) is the maximum degree in G . It is known that a'(G)≤ Δ + 2 for almost all Δ -regular graphs, including all Δ -regular graphs whose girth is at least log Δ . We prove that determining the acyclic edge chromatic number of an arbitrary graph is an NP-complete problem. For graphs G with sufficiently large girth in terms of Δ(G) , we present deterministic polynomial-time algorithms that color the edges of G acyclically using at most Δ(G)+2 colors.  相似文献   

15.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

16.
Assuming thatk≥2 and Δ k /P does not have p-measure 0, it is shown that BP · Δ k /P k /P . This implies that the following conditions hold if Δ 2 P does not have p-measure 0:
(i)  AM ∩ co-AM is low for Δ 2 P . (Thus BPP and the graph isomorphism problem are low for Δ 2 P .)
(ii)  If Δ 2 P ≠ PH, then NP does not have polynomial-size circuits.
This research was supported in part by National Science Foundation Grant CCR-9157382, with matching funds from Rockwell International, Microware Systems Corporation, and Amoco Foundation.  相似文献   

17.
An axis-parallel k-dimensional box is a Cartesian product R 1×R 2×???×R k where R i (for 1≤ik) is a closed interval of the form [a i ,b i ] on the real line. For a graph G, its boxicity box?(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a $\lfloor 1+\frac{1}{c}\log n\rfloor^{d-1}An axis-parallel k-dimensional box is a Cartesian product R 1×R 2×⋅⋅⋅×R k where R i (for 1≤ik) is a closed interval of the form [a i ,b i ] on the real line. For a graph G, its boxicity box (G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a ?1+\frac1clogn?d-1\lfloor 1+\frac{1}{c}\log n\rfloor^{d-1} approximation ratio for any constant c≥1 when d≥2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard.  相似文献   

18.
We show that several problems that are hard for various parameterized complexity classes on general graphs, become fixed parameter tractable on graphs with no small cycles. More specifically, we give fixed parameter tractable algorithms for Dominating Set, t -Vertex Cover (where we need to cover at least t edges) and several of their variants on graphs with girth at least five. These problems are known to be W[i]-hard for some i≥1 in general graphs. We also show that the Dominating Set problem is W[2]-hard for bipartite graphs and hence for triangle free graphs. In the case of Independent Set and several of its variants, we show these problems to be fixed parameter tractable even in triangle free graphs. In contrast, we show that the Dense Subgraph problem where one is interested in finding an induced subgraph on k vertices having at least l edges, parameterized by k, is W[1]-hard even on graphs with girth at least six. Finally, we give an O(log p) ratio approximation algorithm for the Dominating Set problem for graphs with girth at least 5, where p is the size of an optimum dominating set of the graph. This improves the previous O(log n) factor approximation algorithm for the problem, where n is the number of vertices of the input graph. A preliminary version of this paper appeared in the Proceedings of 10th Scandinavian Workshop on Algorithm Theory (SWAT), Lecture Notes in Computer Science, vol. 4059, pp. 304–315, 2006.  相似文献   

19.
In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following the work of Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance. An incremental algorithm produces a nested sequence of facility sets F 1F 2⋅⋅⋅F n , where |F k |=k for each k. Such an algorithm is called c -cost-competitive if the cost of each F k is at most c times the optimum k-median cost. We give improved incremental algorithms for the metric version of this problem: an 8-cost-competitive deterministic algorithm, a 2e≈5.44-cost-competitive randomized algorithm, a (24+ε)-cost-competitive, polynomial-time deterministic algorithm, and a 6e+ε≈16.31-cost-competitive, polynomial-time randomized algorithm. We also consider the competitive ratio with respect to size. An algorithm is s -size-competitive if the cost of each F k is at most the minimum cost of any set of k facilities, while the size of F k is at most sk. We show that the optimal size-competitive ratios for this problem, in the deterministic and randomized cases, are 4 and e. For polynomial-time algorithms, we present the first polynomial-time O(log m)-size-approximation algorithm for the offline problem, as well as a polynomial-time O(log m)-size-competitive algorithm for the incremental problem. Our upper bound proofs reduce the incremental medians problem to the following online bidding problem: faced with some unknown threshold T∈ℝ+, an algorithm must submit “bids” b∈ℝ+ until it submits a bid bT, paying the sum of all its bids. We present folklore algorithms for online bidding and prove that they are optimally competitive. We extend some of the above results for incremental medians to approximately metric distance functions and to incremental fractional medians. Finally, we consider a restricted version of the incremental medians problem where k is restricted to one of two given values, for which we give a deterministic algorithm with a nearly optimal cost-competitive ratio. The conference version of this paper appeared in (Chrobak, M., et al. in Lecture Notes in Computer Science, vol. 3887, pp. 311–322, 2006). Research of M. Chrobak supported by NSF Grant CCR-0208856.  相似文献   

20.
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant ε > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (ku, kl), our algorithm constructs a vertex cover of size (ku*, kl* ), satisfying max{ku*/ku, kl* /kl} 1 ε.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号