首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Activated platelets tether and activate myeloid leukocytes. To investigate the potential relevance of this mechanism in acute myocardial infarction (AMI), we examined cytokine induction by leukocyte-platelet adhesion and the occurrence of leukocyte-platelet conjugates in patients with AMI. METHODS AND RESULTS: We obtained peripheral venous blood samples in 20 patients with AMI before and daily for 5 days after direct percutaneous transluminal coronary angioplasty (PTCA) and in 20 patients undergoing elective PTCA. Throughout the study period, CD41 immunofluorescence of leukocytes (flow cytometry) revealed increased leukocyte-platelet adhesion in patients with AMI compared with control patients (mean +/- SE of fluorescence [channels] before PTCA: 77 +/- 16 versus 35 +/- 9; P = .003). In vitro, thrombin-stimulated fixed platelets bound to neutrophils and monocytes. Within 2 hours, this resulted in increased mRNA for interleukin (IL),1 beta, IL-8, and monocyte chemoattractant protein (MCP)-1 in unfractionated leukocytes. After 4 hours, IL-1 beta and IL-8 concentration of the cell-free supernatant had increased by 268 +/- 36% and 210 +/- 7%, respectively, and cellular MCP-1 content had increased by 170 +/- 8%. Addition of activated platelets to adherent monocytes had a similar effect and was associated with nuclear factor-kappa B activation. Inhibition of binding by anti-P selectin antibodies reduced the effect of activated platelets on cytokine production. CONCLUSIONS: In patients with AMI, leukocyte-platelet adhesion is increased. Binding of activated platelets induces IL-1 beta, IL-8, and MCP-1 in leukocytes. Our findings suggest that leukocyte-platelet adhesion contributes to the regulation of inflammatory responses in AMI.  相似文献   

2.
The aim of this study was to characterize the changes in the quantitative expression of beta 2-integrins and L-selectin detected by means of fluorochrome-conjugated monoclonal antibodies and flow cytometry on leukocytes in the systemic circulation after a major musculoskeletal trauma, i.e. hip replacement surgery, and to relate these changes to parameters of the acute-phase response [plasma acute-phase reactants (C-reactive protein, CRP, and interleukin-6, IL-6) and parameters of coagulation activation (thrombin-antithrombin III complexes, TAT)]. Eight patients with either primary or secondary osteoarthritis of the hip received uncemented total hip prostheses. LFA-1 (CD11a/CD18) was upregulated on granulocytes during the operation. MAC-1 (CD11b/CD18) expression on monocytes increased to peak levels 20 h after surgery, whereas the L-selectin (CD62L) expression on monocytes and granulocytes reached peak values at the end of surgery. The changes in expression of LFA-1 on monocytes, MAC-1 on granulocytes and p150,95 (CD11c/CD18) on monocytes and granulocytes during and after the operation did not reach statistical significance. TAT and IL-6 increased during surgery and reached peak values at the end of the operation and 20 h after surgery, respectively. In contrast, CPR concentrations increased after surgery with peak levels 44 h postoperatively. Significant upregulation of LFA-1 on granulocytes and L-selectin on monocytes and granulocytes preceded the increase in IL-6 which again preceded the increase in CRP. However, the up- or downregulation of leukocyte beta 2-integrins and L-selectin during and after surgery was not significantly correlated with the increase in IL-6. The increases in TAT correlated well with the upregulation of L-selectin on monocytes, but not with the beta 2-integrins known to participate in the coagulation process in vitro. The rise in CRP was inversely correlated with the maximal increase in expression of MAC-1 on monocytes. In conclusion, the changes in leukocyte adhesion molecules during and after surgery indicate changes in critical leukocyte functions. The lack of correlation between quantitative up- and downregulation of leukocyte beta 2-integrins and parameters of the acute phase response suggests that these processes are regulated through independent pathways or that functional up- and downregulation of adhesion molecules, shedding, leukocyte-endothelial adhesion and mobilization of new unactivated cells may result in a net estimate of leukocyte activation not suspected to be positively correlated to acute-phase reactants.  相似文献   

3.
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by trombocytopenia, eczema, and progressive decline of the immune function. In addition, lymphocytes and platelets from WAS patients have morphologic abnormalities. Since chemokines may induce morphologic changes and migration of leukocytes, we investigated the monocyte response to chemoattractants in cells from WAS patients with an identified mutation in the WAS protein gene. Here, we report that monocytes derived from four patients with molecularly defined typical WAS have a severely impaired migration in response to FMLP and to the chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha compared with normal donors. Conversely, neither MCP-1 binding to monocytes nor induction of the respiratory burst by MCP-1 and FMLP is significantly different between WAS patients and normal donors. Within a few minutes of stimulation, monocytes respond to chemokines with increased expression of adhesion molecules and with morphologic changes such as cell polarization. Although up-regulation of CD11b/CD18 expression following stimulation with FMLP or MCP-1 is preserved in WAS patients, cell polarization is dramatically decreased. Staining of F-actin by FITC-phalloidin in monocytes stimulated with chemoattractants shows F-actin to have a rounded shape in WAS patients, as opposed to the polymorphic distribution of F-actin in the polarized monocytes from healthy donors. These results suggest that WAS protein is involved in the monocyte response to the chemokines MCP-1 and macrophage inflammatory protein-1alpha.  相似文献   

4.
The effect of anticoagulant (heparin vs EDTA) on chemokine induced CD11b upregulation on neutrophils, eosinophils, and monocytes in human whole blood was determined. For most of the chemokines (IL-8, GRO-alpha, MCP-1, MIP-1 alpha) the difference in the response of leukocytes in EDTA anticoagulated blood vs those in heparinized blood was the degree of their maximal response, with a slightly higher maximal increase in CD11b expression usually seen in cells from EDTA anticoagulated blood. Two chemokines were exceptions to this: RANTES and MIP-1 beta. RANTES is considered to be a stimulator of monocytes and eosinophils and not of neutrophils. As expected, neutrophils in heparinized whole blood did not respond to RANTES; however, neutrophils in EDTA anticoagulated blood had a significant increase in CD11b when exposed to high concentrations (1 microM) of RANTES. RANTES-induced CD11b expression on monocytes and eosinophils in these samples were the same in either heparin or EDTA. In EDTA anticoagulated blood, MIP-1 beta did not elicit a response in either monocytes, eosinophils or neutrophils; however, in heparinized blood, all three cell types increased CD11b expression upon exposure to 1 microM MIP-1 beta.  相似文献   

5.
Platelets, activated by various agonists, produce microparticles (MP) from the plasma membrane, which are released into the extracellular space. Although the mechanism of MP formation has been clarified, their biological importance remains ill defined. We have recently shown that platelet-derived MP influence platelet and endothelial cell function. In this study, we have further examined the mechanism of cellular activation by platelet MP. To address the possibility that they may influence monocyte-endothelial interactions, we used an in vitro assay to examine their effects on the adhesion of monocytes to human umbilical vein endothelial cells (HUVEC). Platelet MP increased the adhesion of monocytes to HUVEC in a time- and dose-dependent manner. Maximal adhesion of monocytes to resting HUVEC was observed after 24 h of stimulation with MP. Similar kinetics were observed with U-937 (human promonocytic leukemia) cells, used as a model for the blood-borne monocyte. Maximal adhesion of resting monocytes to MP-stimulated HUVEC was observed after 5 h of stimulation with MP. The EC50s for MP-induced increases in HUVEC, monocyte, and U-937 cell adhesion is 8.74, 43.41, and 10.83 microg/ml of MP protein, respectively. The induction of monocyte-endothelial adhesion was mimicked by arachidonic acid isolated from MP. The observed increased cellular adhesiveness correlated with MP-induced upregulation of cell adhesion molecules. MP-stimulated HUVEC increased intracellular cell adhesion molecule-1 (ICAM-1) but not vascular cell adhesion molecule-1 (VCAM-1), P-, or E-selectin expression. Monocyte and U-937 lymphocyte function-associated antigen-1 (CD11a/CD18) and macrophage antigen-1 (CD11b/ CD18, alpham/beta2) were both upregulated upon MP stimulation, but an increase in p150,95 (CD11c/CD18), very late antigen-1, or ICAM-1 expression was not observed. The functional importance of these changes was demonstrated with blocking antibodies. MP also induced the chemotaxis of U-937 cells in a dose-dependent manner with an EC50 of 4.40 microg/ml of MP protein. Similarly, arachidonic acid isolated from MP mimicked the chemotactic response. A role for PKC was implicated in both adhesion and chemotaxis. GF 109203X, a specific inhibitor of PKC, significantly reduced monocyte-endothelial adhesion, as well as U-937 chemotaxis. The demonstration that platelet MP may modulate important aspects of endothelial and monocyte function provides a novel mechanism by which platelets may interact with such cells in human atherosclerosis and inflammation.  相似文献   

6.
To investigate the role of monocyte chemoattractant protein 1 (MCP-1) in the immune response to Mycobacterium tuberculosis, we studied MCP-1 production in tuberculosis patients. CD14+ blood monocytes from tuberculosis patients spontaneously expressed higher levels of MCP-1 mRNA and protein than CD14+ monocytes from healthy tuberculin reactors. MCP-1 production in lymph nodes from tuberculosis patients was also markedly increased. These findings suggest that MCP-1 can contribute to the antimycobacterial inflammatory response by attracting monocytes and T lymphocytes.  相似文献   

7.
We previously identified the structural requirement for the inhibitory activity of Leishmania lipophosphoglycan (LPG) to block endothelial adhesion to monocytes. Here we showed that LPG reduces transendothelial migration of monocytes. LPG pretreatment of endothelial cells (2 microM, 1 h) reduced monocyte migration across endothelial cells activated by bacterial endotoxin (LPS) or IL-1beta (60 and 46%, respectively). A fragment of LPG (i.e., repeating phosphodisaccharide (consisting of galactosyl-mannose)) and LPG coincubated with LPG-neutralizing mAb lacks inhibitory activity on monocyte migration. Pretreatment of monocytes with LPG (2 microM, 1 h) also did not affect monocyte migration through control or LPS-activated endothelial cells. FACS analysis reveals that LPG treatment blocked the LPS-mediated expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells and monocyte adhesion without altering the integrity of the endothelial monolayer. LPG (2 microM, 1 h) alone was capable of altering the expression and distribution of two junctional adhesion molecules, CD31 and vascular endothelium cadherin, as well as reversing the effects of LPS on these proteins. The induction of endothelial cells by LPS to transcribe and release monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by LPG (40-65%). LPG treatment of nonactivated endothelial cells also suppressed by 55 to 75% the monocyte migration triggered by a MCP-1 chemoattractant gradient, and coincubation of LPG with neutralizing mAb abrogated the inhibitory activity. Together, these data point to a novel anti-inflammatory function of LPG in reducing monocyte migration across endothelial cells via a mechanism of inhibition of endothelial expression of cell adhesion molecules, modulation of intercellular junctional proteins, and synthesis of MCP-1.  相似文献   

8.
The migration of leukocytes across the blood-brain barrier (BBB) into the central nervous system is critical in the pathogenesis of central nervous system inflammatory diseases. The production of chemokines, such as monocyte-chemoattractant protein-1 (MCP-1), by endothelial cells (EC) and astrocytes may initiate and amplify this process. Using a coculture of human EC and astrocytes to model the BBB, we demonstrated that exogenous MCP-1 induces the transmigration of monocytes in a dose-dependent manner. TNF-alpha, IFN-gamma, or IL-1beta treatment of cocultures also induced significant migration of monocytes that correlates with the induction of MCP-1 protein. TGF-beta, previously shown to induce MCP-1 expression in astrocytes, but not in EC, caused migration of monocytes across cocultures, but not across EC grown alone. Monocytes and lymphocytes transmigrated across cytokine-treated cocultures in greater numbers than across EC alone. Astrocytes were the main source of cytokine-induced MCP-1, supporting a role for astrocytes in facilitating leukocyte transmigration. A blocking Ab to MCP-1 inhibited MCP-1- and cytokine-induced transmigration of monocytes by 85-90%. Cytokine treatment of cocultures also resulted in the transmigration of activated, CD69-positive lymphocytes. The MCP-1-mediated transmigration of monocytes across cocultures was blocked using an Ab to ICAM-1 and inhibited by 55% using an Ab to E-selectin. These data suggest a central role for astrocyte-derived MCP-1 in directing the migration of monocytes and lymphocytes across the BBB.  相似文献   

9.
A prominent feature of Lyme disease is the perivascular accumulation of mononuclear leukocytes. Incubation of human umbilical vein endothelial cells (HUVEC) cultured on amniotic tissue with either interleukin-1 (IL-1) or Borrelia burgdorferi, the spirochetal agent of Lyme disease, increased the rate at which human monocytes migrated across the endothelial monolayers. Very late antigen 4 (VLA-4) and CD11/CD18 integrins mediated migration of monocytes across HUVEC exposed to either B. burgdorferi or IL-1 in similar manners. Neutralizing antibodies to the chemokine monocyte chemoattractant protein 1 (MCP-1) inhibited the migration of monocytes across unstimulated, IL-1-treated, or B. burgdorferi-stimulated HUVEC by 91% +/- 3%, 65% +/- 2%, or 25% +/- 22%, respectively. Stimulation of HUVEC with B. burgdorferi also promoted a 6-fold +/- 2-fold increase in the migration of human CD4(+) T lymphocytes. Although MCP-1 played only a limited role in the migration of monocytes across B. burgdorferi-treated HUVEC, migration of CD4(+) T lymphocytes across HUVEC exposed to spirochetes was highly dependent on this chemokine. The anti-inflammatory cytokine IL-10 reduced both migration of monocytes and endothelial production of MCP-1 in response to B. burgdorferi by approximately 50%, yet IL-10 inhibited neither migration nor secretion of MCP-1 when HUVEC were stimulated with IL-1. Our results suggest that activation of endothelium by B. burgdorferi may contribute to formation of the chronic inflammatory infiltrates associated with Lyme disease. The transendothelial migration of monocytes that is induced by B. burgdorferi is significantly less dependent on MCP-1 than is migration induced by IL-1. Selective inhibition by IL-10 further indicates that B. burgdorferi and IL-1 employ distinct mechanisms to activate endothelial cells.  相似文献   

10.
Basophils and eosinophils can be activated in vitro by several chemokines such as RANTES, monocyte chemotactic and activating factor (MCAF/MCP-1), macrophage inflammatory peptide-1 alpha (MIP-1 alpha), and interleukin-8 (IL-8). To explore the clinical relevance of the in vitro observations, we measured here the concentrations of these chemokines in sputa from asthmatic patients during acute attacks. Before the onset of a late-phase exacerbation, sputum MCAF/MCP-1, MIP-1 alpha, and IL-8 levels transiently but markedly increased from the basal levels in all of the patients with exacerbation, whereas the sputum levels of these chemokines remained unchanged during the course in the patients without a late-phase exacerbation. These results suggest the involvement of these chemokines in the late-phase exacerbation of asthma.  相似文献   

11.
Treatment of symptomatic carcinomatous pleural effusions is primarily directed at local palliation with a wide variety of sclerosing agents, of which talc is considered to be the most successful. The mechanism whereby talc achieves this effect is unknown. The objective of this study was to investigate whether talc stimulates pleural mesothelial cells (PMC) to release C-X-C and/or C-C chemokines and express adhesion molecules that initiate and amplify the inflammatory process in the pleural space. When PMC were challenged with talc in vitro, interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) levels were increased (p < 0.001) both at the protein and the mRNA level as compared with unstimulated cultures. Talc-stimulated PMC culture supernatant showed chemotactic activity for neutrophils and monocytes. The chemotactic activity of PMC culture supernatant was blocked by 44.2% with IL-8-specific antibody and by 55.7% with MCP-1-specific antibody, demonstrating that PMC-derived chemokines are bioactive. Talc also enhanced intercellular adhesion molecule-1 (ICAM-1) expression in PMC. The data demonstrate that talc stimulates PMC to release chemokines and express adhesion molecules that may play a critical role in pleurodesis.  相似文献   

12.
The pathophysiology of central nervous system (CNS) inflammatory disease is dependent, in part, on leukocyte recruitment across the blood-brain barrier. The expression of cytokines and chemokines by astrocytes may contribute to this process. Astrocytes express monocyte chemoattractant protein-1 (MCP-1), an activator of monocytes and a chemoattractant for monocytes and activated T cells. We examined the regulation of MCP-1 expression in human fetal astrocytes following cytokine treatment in the presence and absence of transforming growth factor beta (TGF-beta). TGF-beta, TNFalpha and IL-1beta, but not IFNgamma, induced MCP-1 mRNA and protein. TGF-beta, in cotreatment with TNFalpha caused an additive increase in MCP-1 mRNA, but not protein. In combination with IFNgamma, TGF-beta significantly increased MCP-1 mRNA and protein, as compared to either untreated, TGF-beta- or IFNgamma-treated astrocytes. However, TGF-gamma in cotreatment with IL-1beta decreased MCP-1 mRNA and protein, as compared to IL-1beta alone. Treatment of astrocytes with TGF-beta prior to TNFalpha, IFNgamma or IL-1beta treatment significantly increased MCP-1 expression. The kinetics of cytokine expression in the CNS may differentially regulate astrocyte-derived MCP-1 expression and subsequent recruitment and activation of leukocytes.  相似文献   

13.
Human retinal pigment epithelial (RPE) cells secrete chemokines, interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) in response to pro-inflammatory cytokines. In this study we (1) examined the efficiency of human RPE IL-8 and MCP-1 secretion, (2) determined the amount of neutrophil and monocyte chemotactic activity in human RPE cell conditioned media and cell extracts that is attributable to IL-8 and MCP-1, respectively, and (3) assessed the sensitivity of immunohistochemistry and in situ hybridization for detecting chemokine production by cytokine-stimulated human RPE cells. Conditioned media and extracts from human RPE cells stimulated with various physiologic concentrations of interleukin-1 beta (IL-1 beta) (0.2-20 ng ml-1), tumor necrosis factor (TNF-alpha) (0.2-20 ng ml-1) or interferon-gamma (IFN-gamma) (10-1000 U ml-1) were examined to compare secreted and cell associated levels of IL-8 and MCP-1 at various time points up to 24 hr. ELISA demonstrated that IL-8 and MCP-1 are both efficiently secreted by pro-inflammatory cytokine treated human RPE cells. Substantial dose- and time-dependent RPE secretion of IL-8 was observed following stimulation with IL-1 beta or TNF-alpha, but cell associated IL-8 was detectable only after high dose (20 ng ml-1) IL-1 beta stimulation and comprised less than 1% of the total IL-8 induced. Dose- and time-dependent RPE cell MCP-1 secretion was also observed following IL-1 beta > TNF-alpha > IFN-gamma stimulation, with an average of 4% of the total MCP-1 retained within RPE. Bioassays demonstrated neutrophil and monocyte chemotactic activity in conditioned media from stimulated RPE cells, but not in human RPE cell extracts. Inhibition of conditioned media-induced chemotaxis by specific anti-IL-8 or anti-MCP-1 antibodies demonstrated that IL-8 and MCP-1 were responsible for the majority of HRPE-derived neutrophil (> 60%) and monocyte (53-57%) chemotactic activity, respectively. Using in situ hybridization IL-8 mRNA was readily detected within IL-1 beta > TNF-alpha stimulated RPE cells and MCP-1 mRNA easily visualized within IL-1 beta > TNF-alpha > or IFN-gamma stimulated cells. Immunohistochemistry to detect IL-8 was positive only in RPE cells exposed to high dose IL-1 beta (20 ng ml-1) for 8 or 24 hr and was weak. Immunohistochemical staining for MCP-1 in RPE cells was more intense and was visualized within RPE cells stimulated with IL-beta, TNF-alpha, or IFN-gamma. This study demonstrates that: (1) RPE cells efficiently secrete IL-8 and MCP-1 upon stimulation with pro-inflammatory cytokines; (2) secreted IL-8 and MCP-1 account for the majority of human RPE neutrophil and monocyte chemotactic activity; (3) in situ hybridization readily detects IL-8 and MCP-1 mRNA in cytokine stimulated RPE cells; and (4) immunohistochemistry demonstrates cell-associated MCP-1 in cytokine stimulated RPE cells, but only minimal cell-associated IL-8.  相似文献   

14.
The subendothelial accumulation of macrophage-derived foam cells is one of the hallmarks of atherosclerosis. The recruitment of monocytes to the intima requires the interaction of locally produced chemokines with specific cell surface receptors, including the receptor (CCR2) for monocyte chemoattractant protein-1 (MCP-1). We have previously reported that monocyte CCR2 gene expression and function are effectively downregulated by proinflammatory cytokines. In this study we identified low density lipoprotein (LDL) as a positive regulator of CCR2 expression. Monocyte CCR2 expression was dramatically increased in hypercholesterolemic patients compared with normocholesterolemic controls. Similarly, incubation of human THP-1 monocytes with LDL induced a rapid increase in CCR2 mRNA and protein. By 24 hours the number of cell surface receptors was doubled, causing a 3-fold increase in the chemotactic response to MCP-1. The increase in CCR2 expression and chemotaxis was promoted by native LDL but not by oxidized LDL. Oxidized LDL rapidly downregulated CCR2 expression, whereas reductively methylated LDL, which does not bind to the LDL receptor, had only modest effects on CCR2 expression. A neutralizing anti-LDL receptor antibody prevented the effect of LDL, suggesting that binding and internalization of LDL were essential for CCR2 upregulation. The induction of CCR2 expression appeared to be mediated by LDL-derived cholesterol, because cells treated with free cholesterol also showed increased CCR2 expression. These data suggest that elevated plasma LDL levels in conditions such as hypercholesterolemia enhance monocyte CCR2 expression and chemotactic response and potentially contribute to increased monocyte recruitment to the vessel wall in chronic inflammation and atherogenesis.  相似文献   

15.
Activation of complement in the vicinity of endothelium is thought to contribute to the tissue manifestations of inflammatory and immune responses. Endothelial cells contribute to these processes in part by the elaboration of chemokines that activate various leukocytes and direct their migration into tissues. We investigated the mechanisms by which activation of complement on endothelial cell surfaces might influence the expression of chemokine genes in endothelial cells. In a model for the immune reaction occurring in a xenograft, human serum, as a source of xenoreactive anti-endothelial Abs and complement, induced expression of the monocyte chemotactic protein-1 (MCP-1), IL-8, and RANTES genes. The MCP-1 and IL-8 genes were expressed within 3 h as a first phase and at > 12 h as a second phase. The RANTES gene was expressed in porcine endothelial cells only 12 h after exposure to human serum. The expression of these genes required activation of complement and assembly of membrane attack complex, as it was inhibited by soluble CR1 and did not occur in the absence of C8. The early phase of MCP-1 and IL-8 gene expression did not require de novo protein synthesis. The late phase of MCP-1, IL-8, and RANTES gene expression predominantly required the production of IL-1alpha as an intermediate step. The results indicate that the expression of chemokine genes in endothelial cells occurs as a function of differential responses to complement and may in part be conditioned by the availability of IL-1alpha.  相似文献   

16.
Leukocyte accumulation and activation are key events in the pathogenesis of inflammatory lung disease. The ability of human airway smooth muscle cells (HASM) to contribute to the inflammatory process by its ability to produce the chemokines interleukin (IL) 8, monocyte chemotactic protein (MCP-1) and regulated on activation, normal T cell expressed and secreted (RANTES) was investigated. Cultured HASM, when stimulated with the pro-inflammatory cytokines IL-1 alpha (0.01-1 ng/ml) or tumour necrosis factor alpha (TNF-alpha, 0.3-30 ng/ml), synthesize and release substantial amounts of IL-8, as assessed by specific immunoassay, bioasssay (elevation of intracellular free calcium in human neutrophils), and upregulation of mRNA. These stimuli also increased MCP-1 production and mRNA expression, but RANTES mRNA expression was not detected at 24 h. The smooth muscle spasmogen endothelin 1 (1 microM) was unable to stimulate IL-8 or MCP-1 release or mRNA expression. These data indicate that HASM may constitute an important source of leukocyte attractants in the inflamed lung, where the inducing stimuli, IL-1 alpha and TNF-alpha, are also likely to be present.  相似文献   

17.
PURPOSE: The purpose of the study was to examine the effect of T-lymphocyte products on human retinal pigment epithelial (HRPE) cell interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion and gene expression. METHODS: HRPE cells were stimulated for 2, 4, 8, or 24 hours with 20% conditioned media (CM) from T-lymphocytes stimulated with CD3 or CD28 monoclonal antibodies (mAbs) or phorbol myristic acid. In some experiments, CM from CD3 mAb-stimulated T-lymphocytes was preincubated with neutralizing anti-(alpha)-tumor necrosis factor (TNF), alpha-interferon-gamma (IFN-gamma), or alpha-interleukin-1 (IL-1) mAb (control) to determine the contributions of each of these cytokines to HRPE chemokine induction by stimulated T-lymphocyte CM. HRPE cells were stimulated for 8 and 24 hours with IL-1 beta (0.2 to 20.0 ng/ml) (positive control), TNF-alpha (0.2 to 20.0 ng/ml) (positive control), IFN-gamma (1 to 1000 U/ml), IFN-gamma + IL-1 beta, IFN-gamma + TNF-alpha. Interleukin-2 (IL-2; 100 ng/ml) alone or in combination with IL-1 beta, TNF-alpha, or IFN-gamma also was tested. Enzyme-linked immunosorbent assay (ELISA) and Northern blot analyses were performed to determine secreted IL-8 and MCP-1 and their steady state mRNA expression, respectively. RESULTS: ELISA showed significant increases in HRPE IL-8 and MCP-1 secretion by CM from T-lymphocytes stimulated with CD3 or CD3 + CD28 mAb. Smaller, but significant, increases in IL-8 and MCP-1 resulted from CM phorbol myristic acid-stimulated T-lymphocytes. CM preincubated with neutralizing alpha-TNF or alpha-IFN-gamma mAb induced significantly less HRPE IL-8 and MCP-1, whereas preincubation of CM with neutralizing alpha-IL-1 mAb failed to inhibit CM-induced IL-8 or MCP-1. Northern blot analysis showed increased HRPE IL-8 and MCP-1 mRNA expression within 2 hours of stimulation and was maintained up to 24 hours. CM from T-lymphocytes stimulated with CD3 mAb or CD3 + CD28 mAb produced the greatest increases in IL-8 and MCP-1 mRNA. IFN-gamma induced dose-dependent increases in HRPE MCP-1, but not IL-8, IFN-gamma potentiated IL-1 beta and TNF-alpha-induced MCP-1 production, but showed little modulation of IL-1 beta and TNF-alpha-induced IL-8 production. IL-2 did not induce HRPE IL-8 or MCP-1, nor did it modulate the effects of the other cytokines. Northern blot analysis confirmed the ELISA results. CONCLUSIONS: T-lymphocyte secretions induce HRPE IL-8 and MCP-1 gene expression and secretion. TNF and IFN-gamma appear to be necessary components of T-lymphocyte CM for the induction of HRPE IL-8 and MCP-1. IFN-gamma alone induces HRPE MCP-1, albeit to a lesser extent than would IL-1 beta or TNF-alpha, and potentiates IL-1 beta- and TNF-alpha-induced HRPE MCP-1. IL-2 does not appear to modulate cytokine-induced HRPE IL-8 or MCP-1.  相似文献   

18.
We investigated the effect of TNF alpha, IL-1alpha and IFN gamma on two neuroblastoma (NB) cell lines (SK-N-SH and SK-N-MC). These lines responded differentially to IL-1alpha, TNF alpha and IFN gamma for MCP-1 and IL-8 production and expression of the ICAM-1 and VCAM-1 adhesion molecules. None of the cytokines induced MCP-1 or IL-8 on SK-N-MC cells. Both chemokines were produced in response to IL-1alpha by SK-N-SH cells, while TNF alpha induced mainly MCP-1 production. Addition of IFN gamma decreased IL-8, but not MCP-1 production. These responses correlated with monocyte and neutrophil chemotactic activity in NB culture supernatants. This activity was neutralized by antibodies to IL-8 and MCP-1. The expression of ICAM-1 on SK-N-MC was up-regulated by TNF alpha or IFN gamma, while IL-1alpha also upregulated ICAM-1 on SK-N-SH cells. VCAM-1 expression on SK-N-SH was induced by IL-1alpha and TNF alpha and IFN gamma synergized with TNF alpha in this respect on both NB cell lines. These results suggest that mechanisms for chemokine production and VCAM-1 and ICAM-1 upregulation by inflammatory cytokines differ and IFN gamma, in conjunction with TNF alpha, stimulate neural cell responses (high MCP-1 and VCAM-1 and decreased IL-8) favouring mononuclear cell recruitment.  相似文献   

19.
Eosinophil accumulation is a distinctive feature of lung allergic inflammation. Here, we have used a mouse model of OVA (ovalbumin)-induced pulmonary eosinophilia to study the cellular and molecular mechanisms for this selective recruitment of eosinophils to the airways. In this model there was an early accumulation of infiltrating monocytes/macrophages in the lung during the OVA treatment, whereas the increase in infiltrating T-lymphocytes paralleled the accumulation of eosinophils. The kinetics of accumulation of these three leukocyte subtypes correlated with the levels of mRNA expression of the chemokines monocyte chemotactic peptide-1/JE, eotaxin, and RANTES (regulated upon activation in normal T cells expressed and secreted), suggesting their involvement in the recruitment of these leukocytes. Furthermore, blockade of eotaxin with specific antibodies in vivo reduced the accumulation of eosinophils in the lung in response to OVA by half. Mature CD4+ T-lymphocytes were absolutely required for OVA-induced eosinophil accumulation since lung eosinophilia was prevented in CD4+-deficient mice. However, these cells were neither the main producers of the major eosinophilic chemokines eotaxin, RANTES, or MIP-1alpha, nor did they regulate the expression of these chemokines. Rather, the presence of CD4+ T cells was necessary for enhancement of VCAM-1 (vascular cell adhesion molecule-1) expression in the lung during allergic inflammation induced by the OVA treatment. In support of this, mice genetically deficient for VCAM-1 and intercellular adhesion molecule-1 failed to develop pulmonary eosinophilia. Selective eosinophilic recruitment during lung allergic inflammation results from a sequential accumulation of certain leukocyte types, particularly T cells, and relies on the presence of both eosinophilic chemoattractants and adhesion receptors.  相似文献   

20.
Lyme disease is clinically and histologically characterized by strong inflammatory reactions that contrast the paucity of spirochetes at lesional sites, indicating that borreliae induce mechanisms that amplify the inflammatory response. To reveal the underlying mechanisms of chemoattraction and activation of responding leukocytes, we investigated the induction of chemokines in human monocytes exposed to Borrelia burgdorferi by a dose-response and kinetic analysis. Lipopolysaccharide (LPS) derived from Escherichia coli was used as a positive control stimulus. The release of the CXC chemokines interleukin-8 (IL-8) and GRO-alpha and the CC chemokines MIP-1alpha, MCP-1, and RANTES was determined by specific enzyme-linked immunosorbent assays, and the corresponding gene expression patterns were determined by Northern blot analysis. The results showed a rapid and strong borrelia-inducible gene expression which was followed by the release of chemokines with peak levels after 12 to 16 h. Spirochetes and LPS were comparably effective in stimulating IL-8, GRO-alpha, MCP-1, and RANTES expression, whereas MIP-1alpha production preceded and exceeded chemokine levels induced by LPS. Unlike other bacteria, the spirochetes themselves did not bear or release factors with intrinsic chemotactic activity for monocytes or neutrophils. Thus, B. burgdorferi appears to be a strong inducer of chemokines which may, by the attraction and activation of phagocytic leukocytes, significantly contribute to inflammation and tissue damage observed in Lyme disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号