首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of lightweight sandwich panels consisting of vertically aligned hollow Al–Si alloy tubes as core construction and carbon fiber composite face sheets was designed. The hollow Al–Si alloy tubes were fabricated using precision casting and were bonded to the face sheets using an epoxy adhesive. The out-of-plane compression (i.e. core crushing), in-plane compression, and three-point bending response of the panels were tested until failure. The hollow Ai–Si alloy tubes core configuration show superior specific strength under crushing compared to common metallic and stochastic foam cores. Under in-plane compression and three-point bending, the buckling of face sheets and debonding of hollow cores from the face sheets were observed. Simple analytical relationships based on the concepts of mechanics of materials were provided for the compression tests, which estimate the sandwich panels’ strength with high fidelity. For three-point bending, detailed finite element analysis was used to model the response and initial failure of the sandwich panels.  相似文献   

2.
Fiber-reinforced polymer (FRP) sandwich deck panels with sinusoidal core geometry have shown to be successful both in new construction and the rehabilitation of existing bridge decks. This paper is focused on an experimental study of the strength evaluations of a honeycomb sandwich core under out-of-plane compression and transverse shear. The sinusoidal core is made of E-glass Chopped Strand Mat (ChSM) and Polyester resin. The compressive, tensile and shear strengths were first obtained from coupon tests. The out-of-plane compression tests were performed on representative single-cell volume elements of sandwich panels, and the tests included “stabilized” samples to induce compression failure, and “bare” samples to induce local buckling of the core. Finally, four-point bending tests were conducted to study the structural strength behavior under transverse shear. Two types of beam samples were manufactured by orienting the sinusoidal wave either along the length (longitudinal) or along the width (transverse). Both typical shear failure mode of the core material and delamination at the core–facesheet bonding interface were observed for longitudinal samples. The failure for transverse samples was caused by core panel separation. For both single-cell and beam-type specimen tests, the number of bonding layers, i.e., the amount of ChSM contact layer and resin used to embed the core into the facesheet, and the core thickness are varied to study their influence. The experimental results described herein can be subsequently used to develop design guidelines.  相似文献   

3.
为研究等腰梯形蜂窝芯玻璃钢夹芯板面内压缩破坏机制, 利用材料试验机对夹芯板面内压缩性能进行了试验测试, 并开展了模拟研究。结果表明: 夹芯板的面内压缩破坏方式主要有面板折断、夹芯板屈曲失稳和夹芯板中面板与蜂窝芯脱粘3种类型。面板为夹芯板面内压缩的主要承载构件, 蜂窝芯对面板起到固支作用。面板结构参数与材料参数为影响夹芯板面内压缩抗压强度与抗压刚度主要因素, 多数蜂窝芯的结构参数与材料参数对夹芯板面内压缩抗压强度的影响微弱, 而个别蜂窝芯的结构参数对夹芯板面内压缩抗压刚度的影响比较显著。夹芯板体积一定时, 随着蜂窝芯胞体单元数量的增加, 夹芯板面内压缩的抗压强度与抗压刚度逐渐增大。   相似文献   

4.
Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid-structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.  相似文献   

5.
Abstract:  The objective of the paper is to provide an overview of the mechanical effects, which determine the occurrence and severity of localised bending effects in sandwich structures, and to provide a survey of the available structural sandwich models, with special emphasis on their ability to describe local bending effects. The presentation includes a brief survey of the various structural models, including classical, 'first-order shear', 'high-order' and continuum mechanics-based models. Moreover, the paper focuses on and addresses the experimental characterisation and assessment of local effects in sandwich structures based on realistic engineering practice, examples including sandwich panels with core materials of different stiffness (core junctions), sandwich plates with inserts and junctions between sandwich panels of different curvature. The issues of general load response (global and local) as well as failure and fatigue of such sandwich structures subjected to out-of-plane and in-plane loads are discussed in some detail, with the inclusion of recent theoretical and experimental results.  相似文献   

6.
制备了多种铺层方式的连续玻璃纤维/聚丙烯(GF/PP)复合材料波纹夹芯板,并研究了GF/PP复合材料波纹夹芯板的平压性能和弯曲性能。结果显示:面板相同时,增加芯板厚度可大大增加夹芯板整体的平压性能;芯板相同时,面板的铺层方式对夹芯板的平压性能有一定影响,且面板含有0°和90°铺层的波纹夹芯板具有最高的平压模量,为59.55 MPa,而单纯增加面板厚度对提升波纹夹芯板的平压性能影响不大;面板铺层方式对弯曲性能具有较大影响,面板为0°铺层的波纹夹芯板具有最高的横向弯曲模量,为783.66 MPa,面板为90°铺层的波纹夹芯板具有最高的纵向弯曲模量,为732.09 MPa;面板为单向铺层(0°或90°铺层)时,会使夹芯板另一方向(纵向或横向)的弯曲性能形成短板。   相似文献   

7.
纸瓦楞夹层板的压缩变形与塑性吸能特性研究   总被引:1,自引:0,他引:1  
付云岗  郭彦峰  王忠民  李媛 《包装工程》2016,37(3):89-94,107
目的研究在不同压缩速率下纸瓦楞夹层板的压缩变形与塑性吸能特性。方法利用Hoff夹层板、正交各向异性弹性薄板理论和工程梁理论,研究瓦楞夹层板的横向压缩位移,分析瓦楞芯层的压缩变形模式及塑性吸能特性,提出芯层结构的压溃强度模型,并通过静态压缩实验进行对比分析。结果B型、C型纸瓦楞夹层板的压溃强度理论预测值分别为0.1195,0.0612 MPa,在1,12,18,48 mm/min的压缩速率下,B型纸瓦楞夹层板的压溃强度分别为0.1011,0.1071,0.1048,0.1075 MPa,C型纸瓦楞夹层板的压溃强度分别为0.0462,0.0640,0.0475,0.0451 MPa。结论低应变率(低压缩率)条件下,纸瓦楞夹层板的横向压缩性能影响基本不变,弹性强度、屈服强度、压溃强度等基本相同。对于相同的材质,几何参数对纸瓦楞夹层板的压缩性能和塑性吸能影响较大。  相似文献   

8.
开展明胶鸟弹撞击复合材料蜂窝夹芯板试验,研究夹芯结构在软体高速冲击下的损伤形式,分析相关因素对结构动态响应结果的影响。通过CT扫描对复合材料蜂窝夹芯板内部进行检测可知,面板出现分层、基体开裂、纤维断裂、凹陷、向胞内屈曲等损伤形式,蜂窝芯出现芯材压溃、与面板脱粘的损伤形式;分析复合材料蜂窝夹芯板后面板的动态变形过程及撞击中心处位移-时间数据可知,复合材料蜂窝夹芯板在撞击过程中出现由全局弯曲变形主导和局部变形主导的两种变形模式;通过对比不同工况下的复合材料蜂窝夹芯板损伤程度可知,复合材料蜂窝夹芯板损伤程度随鸟弹撞击速度的增加而增大;蜂窝芯高度为10 mm的复合材料蜂窝夹芯板较蜂窝芯高度为5 mm的复合材料蜂窝夹芯板的损伤程度大;初始动能较大的球形鸟弹较圆柱形鸟弹对复合材料蜂窝夹芯板造成的冲击损伤程度更大。   相似文献   

9.
The post failure behaviour of sandwich panels loaded in in-plane compression is studied by considering the structural response of such panels with symmetrically located edge debonds. A parametric finite element model is used to determine the influence of different material and geometrical properties on the failure progression, i.e. after initiation of damage. The investigated failure modes are buckling of the debonded face sheets, debond propagation and face sheet failure. The postbuckling failure mode is mainly determined by the fracture toughness of the core and the bending stiffness and strength of the face sheets. The presented approach and results can be used to determine how sandwich panels should be constituted, or not, to promote damage progression favourable for efficient energy absorption during in-plane crushing. The prolonged damage propagation is very complex as it is strongly non-linear and depends on a combination of stiffness, strength and geometry of the constituent materials.  相似文献   

10.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

11.
鉴于泡沫铝材料良好的吸能特性和三明治型组合构件在强度、刚度上的优势,通过有限元分析软件ANSYS/LS-DYNA对钢板-泡沫铝-钢板三明治型组合板进行了装药量为10.0kgTNT的非接触爆炸数值模拟,考察组合板在爆炸荷载作用下的动力响应。研究表明:钢板夹泡沫铝组合板承受爆炸冲击波荷载时,响应方式主要为组合板整体弯曲变形和泡沫铝芯层局部压缩变形,芯层压缩变形是组合板吸收耗散能量的主要途径;适当地增加泡沫铝芯层厚度和面板厚度能够提高组合板的抗爆性能,同时使组合板充分发挥耗能作用。  相似文献   

12.
金属夹层板具有优越的力学性能,良好的吸能特性可用于船舶耐撞、抗爆防护结构设计。以V型折叠式夹芯结构为研究对象,通过试验分析夹芯层结构变形模式、压皱力历程曲线等,得到了夹芯层结构横向压皱力学性能,采用有限元软件Abaqus对其在横向受压时的力学行为进行数值仿真分析,分析结构压皱动态渐进屈曲过程、变形模式、吸能效率、平均压皱强度等。对比分析表明,V型夹芯层结构在横向压皱载荷下发生屈曲、褶皱变形模式,变形模式决定了压皱力学行为及其性能,其中单元变形模式I的吸能效率较高。采用合理的模型化技术得到的有限元计算结果与试验结果两者吻合较好,验证了有限元数值仿真的计算精度。  相似文献   

13.
A plastic micro buckling approach is investigated in order to see whether it can be used to analytically predict the residual strength of carbon fiber sandwich structures.

A parametric study on impact damage resistance and residual strength of sandwich panels with carbon fiber-vinylester faces and PVC foam core is conducted. Two sandwich configurations are studied. The first configuration consists of thin faces and an intermediate density core, representative of a panel from a superstructure. The second configuration consists of thick faces and a high density core, representative of a panel from a hull. Two different impactor geometries are used. One spherical impactor and one pyramid shaped impactor are used in a drop weight rig to inflict low velocity impact damage of different energy levels in the face of the sandwich.

The damages achieved ranges from barely visible damages to penetration of one face. Residual strength is tested using in-plane compression of the sandwich plates either instrumented with strain gauges or monitored with digital speckle photography.  相似文献   


14.
Explosive tests were performed in air to study the dynamic mechanical response of square honeycomb core sandwich panels made from a super-austenitic stainless steel alloy. Tests were conducted at three levels of impulse load on the sandwich panels and solid plates with the same areal density. Impulse was varied by changing the charge weight of the explosive at a constant standoff distance. At the lowest intensity load, significant front face bending and progressive cell wall buckling were observed at the center of the panel closest to the explosion source. Cell wall buckling and core densification increased as the impulse increased. An air blast simulation code was used to determine the blast loads at the front surfaces of the test panels, and these were used as inputs to finite element calculations of the dynamic response of the sandwich structure. Very good agreement was observed between the finite element model predictions of the sandwich panel front and back face displacements and the experimental observations. The model also captured many of the phenomenological details of the core deformation behavior. The honeycomb sandwich panels suffered significantly smaller back face deflections than solid plates of identical mass even though their design was far from optimal for such an application.  相似文献   

15.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

16.
Truss core sandwich panels reinforced by carbon fibers were assembled with bonded laminate facesheets and carbon fiber reinforced truss cores.The top and bottom facesheets were interconnected with truss cores.Both ends of the truss cores were embedded into four layers of top and bottom facesheets.The mechanical properties of truss core sandwich panels were then investigated under out-of-plane and in-plane compression loadings to reveal the failure mechanisms of sandwich panels.Experimental results indicated...  相似文献   

17.
Sandwich panels with Kagome lattice cores reinforced by carbon fibers   总被引:2,自引:0,他引:2  
Stretching dominated Kagome lattices reinforced by carbon fibers were designed and manufactured. The sandwich panels were assembled with bonded laminate skins. The mechanical behaviors of the sandwich panels were tested by out-of-plane compression, in-plane compression and three-point bending. Different failure modes of the sandwich structures were revealed. The experimental results showed that the carbon fiber reinforced lattice grids are much stiffer and stronger than foams and honeycombs. It was found that buckling and debonding dominate the mechanical behavior of the sandwich structures, and that more complaint skin sheets might further improve the overall mechanical performance of the sandwich panels.  相似文献   

18.
19.
The underwater blast response of free-standing sandwich plates with a square honeycomb core and a corrugated core has been measured. The total momentum imparted to the sandwich plate and the degree of core compaction are measured as a function of (i) core strength, (ii) mass of the front face sheet (that is, the wet face) and (iii) time constant of the blast pulse. Finite element calculations are performed in order to analyse the phases of fluid–structure interaction. The choice of core topology has a strong influence upon the dynamic compressive strength and upon the degree of core compression, but has only a minor effect upon the total momentum imparted to the sandwich. For both topologies, a reduction in the mass of the front (wet) face reduces the imparted momentum, but at the expense of increased core compression. Conversely, an increase in the time constant of the blast pulse results in lower core compression, but the performance advantage over a monolithic plate in terms of imparted momentum is reduced. The sandwich panel results are compared with analytical results for monolithic plates of mass equal to that of (i) the sandwich panel and (ii) the front face alone. (Case (i) represents a rigid core while (ii) represents a core of negligible strength.) For most conditions considered, the sandwich results lie between these limits reflecting the coupled nature of core deformation and fluid–structure interaction.  相似文献   

20.
An experimental study was performed to investigate the effect of high temperature exposure on mechanical properties of carbon fiber composite sandwich panel with pyramidal truss core. For this purpose, sandwich panels were exposed to different temperatures for different times. Then sandwich panels were tested under out-of-plane compression till failure after thermal exposure. Our results indicated that both the thermal exposure temperature and time were the important factors affecting the failure of sandwich panels. Severe reductions in residual compressive modulus and strength were observed when sandwich panels were exposed to 300 °C for 6 h. The effect of high temperature exposure on failure mode of sandwich panel was revealed as well. Delamination and low fiber to matrix adhesion caused by the degradation of the matrix properties were found for the specimens exposed to 300 °C. The modulus and strength of sandwich panels at different thermal exposure temperatures and times were predicted with proposed method and compared with measured results. Experimental results showed that the predicted values were close to experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号