首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
This paper is part I of a two part paper, which summarizes recent studies carried out to characterize the weld zone mechanical properties in aluminum alloy 6111 spot friction stir welded joints at both the macromechanical and micromechanical levels. In this paper, micromechanical level investigations are reported for joints welded with different processing times. Apart from microstructural studies and microhardness tests, a new approach to characterize the distribution of weld zone modulus using modal vibration tests on micron scale cantilever array specimens with a micro-scanning laser vibrometer and the corresponding finite element simulations has been developed. Microcantilever array samples were designed in such a way that each microcantilever represents one of the weld zones. Microscopic studies reveal a partial metallurgical bond formed in the direction of flow, which is governed by the tool used and Vickers hardness numbers in those regions were found to be considerably lower than those of the base metal. From the analysis of microcantilever arrays, it was concluded that the variation of modulus in the weld zones is minimal and there is no significant reduction in the weld zone modulus when compared to that of the base metal.  相似文献   

2.
This is part II of a two part paper summarizing material characteristics of Spot Friction Stir Welded (SFW) lap joints in aluminum alloy 6111 at the macromechanical and micromechanical levels. In this paper, modal vibration testing and static flexure testing at the macromechanical level combined with numerical finite element models have been used to indirectly determine the elastic moduli of the base metal and weld zone. It was observed that the modal frequencies (and the corresponding apparent stiffness) of the joint oscillate at low amplitudes with increasing processing time. For each vibration mode, the amplitude of the oscillation in the frequency vs. processing time is only a few percent of the mean frequency, while the corresponding lap shear strength increases monotonically by a factor of about 8 as the processing time increases. Comparison of predicted modal frequencies and static load–displacement response of SFW joints with the corresponding measured responses seem to indicate that the weld zone is not as stiff as the base metal. Parametric studies to determine the effect of weld zone measurements on the modal frequencies have been carried out using finite element models.  相似文献   

3.
Experimental work was carried out to determine the fracture behaviour of welded tubular T-joints made of high strength TMCP-steel. Besides the load parameters, the crack profiles along the crack front were determined for the T-joints as well as for small SE(B)-specimens at different applied loads. This gave a direct information on the crack driving force. The aim of this work--which was part of an ESIS TC1 (subcommittee 3) activity on failure assessment--was an evaluation of various analytical failure assessment methods by carefully controlled experiments on a typical component. The main results of the various flaw assessment methods applied to the T-joints will be briefly summarised.  相似文献   

4.
In this study, the effect of fiber-matrix interphase on the damage modes and failure mechanisms in (0, 903), cross-ply graphite-toughened epoxy laminates is investigated. Two material systems (designated as 810 A and 810 O) with the same fiber and same matrix, but with different fiber sizings, were used to study the effect of the interphase. The system designated as 810 A contained an unreacted Bisphenol-A (epoxy) sizing, while a thermoplastic polyvinylpyrrolidone (PVP) sizing was used in the 810 O system. Damage accumulation in the cross-ply laminates under monotonic tensile loading was monitored using edge replication, x-ray radiography, acoustic emission, optical and scanning electron microscopy. Results indicate that the fiber-matrix bond strength is lower in the 810 O system compared to the 810 A system. Transverse matrix cracking initiates at a significantly lower stress level in the 810 O laminate. The 810 O laminates also exhibit longitudinal splitting, while the stronger bonding suppress this damage mode in the 810 A laminates. Numerous local delamination occur on the 0/90 interface at the intersection of 0 and 90 degree ply cracks, in the 810 O laminates. These are absent in the 810 A laminates. The failure modes are also different in the two material systems used in this study. The 810 A laminate exhibits a brittle failure, controlled by the local stress concentration effects near broken fibers. In the 810 O laminates, the presence of longitudinal splits result in the reduction of stress concentration effects near fibe fractures. This results in a global strain controlled failure in the 810 O system. It is concluded that the presence of different fiber sizings result in different damage modes and failure mechanisms in the cross-ply laminates used in this study.Research Associate, Research Assistant, Alexander Giacco Professor and Professor respectively.  相似文献   

5.
Two noncrimp 3D woven carbon fibre composites (through thickness angle interlock) of binder volume fractions 3% and 6% were characterised for their response to applied deformation. Experiments were performed at quasi static, medium and high strain rates under a large variety of load cases (tension in warp/weft direction, interlaminar/intralaminar shear, through thickness tension/compression, 3-point bending and plate bending). During the study, novel experimental methods were developed in order to address several challenges specific to 3D composite materials. The results show that, while the different binder volume fractions of 3% and 6% have only a small effect on the in-plane stiffness (warp and weft direction), its effect on the delamination resistance in plate bending experiments is considerable. This is a very important result for the use of these materials in the future. The availability, in previous publications, of complementary data for the matrix and the interface between matrix pockets and fibre bundles makes the comprehensive data set a generically useful reference for hierarchical numerical modelling strategies.  相似文献   

6.
The strength of freeze-bonds in thin saline ice has been investigated through two series (in 2008 and 2009) of experiments in the Hamburg Ship Model Basin (HSVA) as a function of the normal confinement (σ), the submersion time (Δt) and the initial ice temperature (Ti). The freeze-bonds were mostly formed in a submerged state, but some were also formed in air. The experimental set-up was improved in the 2009 experiments. In 2008 a ductile-like failure mode dominated (78%), whereas in 2009 the brittle-like dominated (93%). We suggest that this is a combined ice and test set-up effect. The 2009 experimental procedures allowed for careful sample handling giving higher strength and it was softer. Both these things should provoke a more brittle-like force-time response. The average freeze-bond strength in brittle-like samples was around 9 kPa while in ductile-like samples was around 2 kPa. The maximum freeze-bonds strength were measured for short submersion times, from 1 to 20 min, and reached a maximum value of 30 kPa.A Mohr-Coulomb like failure model was found appropriate to represent the freeze-bond shear strength as function of the normal confinement. Saline freeze-bonds in saline water had cohesion/friction angle around 4 and 1.4 kPa/25° for the brittle- and ductile-like samples respectively, which fitted well with previously published data.A bell-shape dependence for τc vs. Δt was found, which agreed with the predictions by Shafrova and Høyland (2007). We suggest that this is essentially a freeze-bond porosity effect and propose three phases in time with subsequent cooling, heating and equilibrium to account for this trend. Qualitative experiments showed that the submersion time and the initial ice temperature were strongly coupled.To account for the connection between contact time, block dimensions and ice properties and the freeze-bond strength, dimensionless number were used. Fourier scaling was more appropriate than Froude scaling to scale freeze-bonds.The freeze-bonding made in air developed fast (in less than 30 s) when the ice was cold and dry, but no freeze-bonding occurred for the same contact times when the ice was warm and wet.  相似文献   

7.
Composites produced by resin infusion techniques will inevitably suffer from variation in resin distribution due to imprecise fibre placement and distortion of the preform during mould closure and infusion. This paper describes an investigation into the effect of variations in fibre volume fraction (FVF) on mode I and mode II delamination behaviour for 5 harness satin (5HS) woven carbon–fibre/epoxy resin composites manufactured by resin transfer moulding (RTM). Additionally, the effect of satin face tow orientation on interlaminar toughness was investigated. In mode I, it was found that toughness increased with increasing FVF and that a strong correlation between fracture surface damage and measured interlaminar fracture toughness was observed. In mode II, measured toughness values were higher than expected and tests were repeated using a mixed-mode rig with 5% mode I. It was found that fracture toughness measurements in pure mode II are significantly affected by friction or mechanical interlocking between the delamination surfaces.  相似文献   

8.
A simplified failure assessment method, which is meant to be appropriate for a first screening of the considered structure with respect to its defect sensitivity, is applied to the T-joint of the ESIS round robin [Fracture behaviour of a welded tubular joint--round robin on failure assessment methods, First Information Package GKSS, 1994; Proceedings of 10th European Conference on Fracture, Berlin, vol. 1, 1994, p. 787]. The method enables one to identify fracture critical parts and to predict roughly the behaviour of a crack-like defect. It consists of an overall required toughness criterion to predict whether or not cleavage fracture can be initiated by a surface crack, and of a simplified stability analysis of the subsequent tearing process. This information can provide the basis to decide whether or not a more detailed failure assessment is required. Combined with analytical calculations of the overall plastic limit loads, the loading and fracture behaviour of the T-joint could be predicted by this simple and cost-effective method with reasonably good accuracy.  相似文献   

9.
Carbon fiber reinforced polymers (CFRP) structure can include dropping-off plies in order to comply with design requirements aiming at significant weight savings. However this type of discontinuity represents a potential source of delamination initiation and propagation which requires assessment of the mechanisms acting at the crack tip. This research investigates the influence of delamination modes I and II on the overall damage process observed in CLS specimen subjected to cyclic loads. The main contribution of this work focuses on the identification and physical interpretation of complex failure mechanisms in harness satin fabric. For this purpose a detailed fractographic analysis was carried out to qualitatively assess the surface fractures in these type of laminates. Results obtained for cyclic loaded CLS specimens were compared to analytical closed form solutions available in the literature. Results indicated that delamination front exhibited distinguishable delamination modes I and II propagating at constant mixed mode ratio (GI/GT).  相似文献   

10.
Crack-tip transformation zones, crack shielding and crack-growth-resistance (R-curve) behaviors of a transformation-toughened ceria-partially stabilized zirconia–alumina (Ce-TZP/alumina) composite were studied in mode II and combined mode I and mode II loading using compact-tension-shear (CTS) specimens. The mode II and mode I stress intensities for both the initial straight cracks and the subsequent kinked cracks were assessed by the method of caustics using geometrically equivalent specimens of polymethyl methacrylate (PMMA). The angle of formation of the transformation zones as well as of extension of the cracks increased systematically with increasing ratio of the mode II and the mode I stress intensities and approached a value of θ*=−72° in pure mode II loading. This angle was close to the angle for maximum hoop tension in the stress field of a mode II crack (θ*=−70.5°). A crack-initiation toughness envelope was constructed on a KIKII diagram using the critical loads for incremental crack extension. The crack-initiation toughness in pure mode II loading was less than the corresponding toughness in mode I loading. This result was consistent with calculations that indicated no shielding from the asymmetric and elongated zones developed in mode II loading. The fracture toughness measured for the kinked cracks at long kink lengths approached the maximum fracture toughness measured for a mode I crack.  相似文献   

11.
This paper is the second of two papers that present and discusses the results from experiments where artificially created freeze-bonds made from saline ice were tested on direct shear with the freeze-bond oriented horizontally. It discusses the friction forces after freeze-bond failure and the failure energy.The friction force showed increasing linear trends with a non-zero intercept when plotted against the normal force. It shows that for low confinements Amonton's law is insufficient. For larger confinements the values of friction coefficient were in the range of previously reported measurements in ice-ice friction. A slightly decreasing trend of the frictional forces was found when the initial ice temperature increased.A Mohr-Coulomb type of model was proposed to model the ice-ice frictional stresses as function of the normal stresses. An empirical model was obtained to describe freeze-bond failure and subsequent deformation by introducing softening of the cohesion and angle of internal friction.The failure energy had similar trends to those observed for the freeze-bond shear strength when plotted against normal confinement, initial ice temperature and submersion time. Quadratic fitting to the data of failure energy as a function of freeze-bond shear strength allowed the estimation of the elastic shear modulus of the freeze-bond by applying a simple rheological model. The values found were between 2 kPa and 6 kPa which are very low compared with the shear elastic modulus for the ice blocks.  相似文献   

12.
Matrix cracking and delamination are the main initial forms of damage in advanced laminated composites manufactured by stacking unidirectional plies of fiber reinforced polymers. In this paper, the onset of matrix cracking is determined for in-plane stress states; in addition, delamination promoted by matrix cracks is analyzed. Taking into account that under in-plane shear stresses composite laminates show a non-linear response prior to the formation of a macro-crack, a plastic-damage model is proposed and implemented. The models predictions correlate well with published experimental data.  相似文献   

13.
The in-plane size, thickness and lay-up effects on the measured fracture toughness associated with fibre tensile failure were investigated for a T300/920 laminated carbon/epoxy material system. Compact tension specimens were tested with scaled in-plane size, increased thickness, and having various proportions of plies orientated at 0° and 90° to the loading direction. No in-plane size effects were discovered; however, testing revealed a thickness dependence. It was found that the ply toughness is significantly dependent on the thickness of the 0° layers. Propagation values of toughness were measured to be 132 kJ/m2 for specimens made up of [90/02] sub-laminates and between 57 and 69 kJ/m2 for all other configurations. Investigation of the fracture surfaces using SEM revealed that the increase in measured toughness for specimens with thicker 0° plies was due to an increase in the amount of pulled-out 0° fibres.  相似文献   

14.
Phosphoric acid is mainly produced by the wet acid process, where corrosion problems could be intensified due to the presence of impurities in the phosphate ores. Operating temperatures and flowing conditions aggravate the aforementioned problems. This work studies the influence of temperature (25–60 °C) and hydrodynamic conditions (Reynolds numbers from 1456 to 5066) on the corrosion of AISI 316L stainless steel in pure and polluted phosphoric acid solutions, by means of cyclic potentiodynamic polarization curves in a hydrodynamic circuit. The effect of temperature is the same as that caused by impurities, that is, higher corrosion rates and hindered passivation and repassivation resistance of the alloy. Statistical analysis by means of surface response methodology proved that the effect of temperature on the corrosion parameters of AISI 316L is more influential than the Reynolds number effect. The Reynolds number seems to have no significant influence on the corrosion behavior of stainless steel. Furthermore, the influence of temperature on the corrosion rate is much higher than on the rest of the corrosion parameters analyzed, especially in polluted phosphoric acid solutions. AISI 316L stainless steel has a clear interest for the phosphoric acid industry as a component material of some equipment due to its good corrosion properties at the different temperatures and Reynolds numbers studied even in polluted media.  相似文献   

15.
The present paper is the first of a two-part series reporting an experimental and theoretical study of the fracture of circumferentially notched samples of a commercial aluminium alloy, i.e. Al6082, subjected to tension, torsion and mixed tension/torsion loading. The overall aim of the work was to investigate the use of a particular method of failure prediction, known as the Theory of Critical Distances. This first part reports the experimental data - load-deflection curves and observed material failure modes - and discusses the consequences of these findings for the development of the theory, which is covered in the second part. It was observed that relatively blunt notches loaded in tension failed by a conventional ductile fracture mode similar to plain (unnotched) specimens. However, in tensile specimens containing sharp notches, failure occurred via the initiation, stable propagation and, finally, unstable propagation, of circumferential ring cracks. Under torsional loading, and independent of the notch root radius, static failures of the tested samples always occurred by the formation and stable propagation of ring cracks. Under mixed-mode loading there was a gradual transition between the ductile and brittle modes and between stable and unstable cracking. For all types of loading, it was observed that crack initiation always coincided with peak loading conditions, and that cracks invariably grew on the plane perpendicular to the specimen’s longitudinal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号