首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了研究氢气环境下双相不锈钢疲劳裂纹萌生和扩展的影响规律,建立氢气环境下双相不锈钢疲劳应变组织演化—氢致开裂之间的关联机制,在5 MPa氢气和5 MPa氮气2种环境中对2205双相不锈钢试样进行了慢应变速率拉伸和疲劳裂纹扩展速率试验。结果表明:在氢气环境下,2205双相不锈钢在慢应变速率拉伸过程中的氢脆敏感性不高,而在疲劳过程中氢脆现象显著,5 MPa氢气环境下2205双相不锈钢的疲劳裂纹扩展速率比氮气环境中的快18倍;氢气能够促进2205双向不锈钢疲劳裂纹尖端周围组织的局部塑性变形,并进一步导致氢致开裂。在氢气环境下2205双相不锈钢疲劳变形过程中,不同的相结构其氢致开裂机理也不同,铁素体相容易形成河流状花样断口形貌(解理断口),而奥氏体相断口形貌多呈现平行的滑移带特征,奥氏体相在铁素体相的解理开裂过程中对裂纹具有阻碍作用。  相似文献   

2.
针对海洋用脐带缆用2507超级双相不锈钢的电磁场腐蚀行为,利用动电位极化、电化学阻抗谱及Mott-Schottky分析,研究电磁场变化对2507超级双相不锈钢在模拟海水中电化学性质的影响;采用SEM及EDS分析2507超级双相不锈钢的腐蚀形貌及产物。结果表明:电磁场会促进2507超级双相不锈钢在3.5%NaCl溶液中的腐蚀;随着电磁场强度的增加,自腐蚀电位下降,阻抗降低,腐蚀加剧;2507超级双相不锈钢在3.5%NaCl溶液中形成的钝化膜半导体产生P-N转化,励磁电流越大,转化电位越负。  相似文献   

3.
点蚀是不锈钢最有害的腐蚀形态之一,点蚀往往是应力腐蚀裂纹和腐蚀疲劳裂纹的起始部位。点蚀是一种腐蚀集中于表面的很小范围内,并深入到金属内部的腐蚀形态,一般形状为小孔状,其危害性比均匀腐蚀严重得多,会引起爆炸、火灾等事故。双相不锈钢兼有铁素体和奥氏体的特性,它将铁素体良好的强度、硬度和奥氏体优良的塑性和韧性结合起来,并具有优良的耐点蚀性能,无论是在力学性能上还是在耐腐蚀性上,双相不锈钢都明显优于铁素体不锈钢和奥氏体不锈钢,可以在点蚀环境中的特种设备上广泛使用。  相似文献   

4.
耿越  陈吉  杨斌  崔霄  桂王林  刘强 《材料保护》2018,(1):9-11,17
目前,对2205双相不锈钢(2205DSS)在疲劳载荷下的相结构演变还缺乏报道。对2205DSS双相不锈钢进行了高周疲劳试验,采用面积统计法测定了铁素体、奥氏体及其两相比,研究了应力幅值和循环周次对铁素体高周疲劳的影响,分析了疲劳诱发的相变机理,探讨了高周疲劳对2205DSS相变行为的影响。结果表明:随着应力幅值和循环周次的增加,2205DSS双相不锈钢中奥氏体逐渐减少,铁素体及其与奥氏体的比逐渐增加;两相具有不协调变形能力,循环载荷在相界处产生局部应力集中以及累积应变能增加,是促进碳原子发生上坡扩散并诱发界面向奥氏体方向移动的原因。  相似文献   

5.
本文研究了一种热轧双相钢在空气和3.5%NaCl 溶液中的疲劳裂纹扩展行为,这种双相钢在空气中具有较好的疲劳裂纹扩展阻力。在3.5%NaCl 溶液中的门槛值比空气中高,这是裂纹内腐蚀产物的楔子作用所致。随着应力比的增加,门槛值降低,并符合应力比对门槛值影响的竞争模型。在较高△K 下,扩展速率符合Paris 公式。在3.5%NaCl 溶液中的腐蚀为活性腐蚀。  相似文献   

6.
本文研究了一种热轧双相钢在空气和3.5%NaCl 溶液中的疲劳裂纹扩展行为,这种双相钢在空气中具有较好的疲劳裂纹扩展阻力。在3.5%NaCl 溶液中的门槛值比空气中高,这是裂纹内腐蚀产物的楔子作用所致。随着应力比的增加,门槛值降低,并符合应力比对门槛值影响的竞争模型。在较高△K 下,扩展速率符合 Paris 公式。在3.5%NaCl 溶液中的腐蚀为活性腐蚀。  相似文献   

7.
铁素体/奥氏体双相不锈钢具有独特的组织结构,使其兼具高的强度、良好的塑韧性和耐局部腐蚀性能,且与奥氏体不锈钢和镍基合金相比节约了我国稀缺的镍资源,在海洋工程、石油化工、核电等多个国家重点能源领域具有广阔的应用前景.从铁素体和奥氏体的相转变、织构、取向关系、边界特征以及二次相等多个方面,介绍了双相不锈钢组织结构的研究进展...  相似文献   

8.
采用化学浸泡腐蚀试验及微观组织和化学成分分析研究了5种铸造双相不锈钢在6%Fe Cl3溶液中的点腐蚀行为,并与316L奥氏体不锈钢进行了对比。结果表明,铸造双相不锈钢的抗点腐蚀性能均优于316L的,腐蚀速率和点腐蚀深度均小于316L奥氏体不锈钢的;双相不锈钢主要耐点蚀能力合金元素在奥氏体和铁素体相内分布不均匀,铬、钼更多地分配于铁素体相内,而镍、氮则更多地分配于奥氏体相内,铁素体相的耐点蚀指数PRE(Cr%+3.3Mo%+16N%)大于奥氏体相;双相不锈钢的耐点腐蚀性能与化学成分有关,随着PRE的增加,双相不锈钢的耐点腐蚀性能提高,铜元素在铁素体内析出的富铜相导致点蚀优先在铁素体内发生和发展。  相似文献   

9.
采用轴向加载疲劳和疲劳裂纹扩展速率性能测试方法,研究了不同腐蚀环境对7475-T7351铝合金厚板疲劳及裂纹扩展性能的影响.结果表明:腐蚀环境对7475铝合金的疲劳性能有较大影响,油箱积水和3.5%(质量分数,下同)NaCl溶液中光滑试样的疲劳强度较室温下降约68%,油箱积水和3.5%NaCl溶液环境对材料疲劳强度的影响程度基本相同;不同环境腐蚀(空气和3.5%NaCl)和不同温度(室温和125℃)对材料的低周疲劳性能影响不大;腐蚀环境对裂纹扩展有较明显的加速作用,油箱积水和3.5%NaCl溶液环境对裂纹扩展的加速规律基本一致.  相似文献   

10.
对DSS2205和SDSS2507进行1000~1200℃的双道次热压缩实验,以研究热变形道次间隔过程中双相不锈钢的微观组织演变及其对合金后续变形行为的影响。结果表明:较高的变形温度(1200℃)不利于奥氏体稳定。随着保温时间的延长,γ→δ相变使得奥氏体占比逐渐降低,亚稳铁素体再结晶晶粒明显长大,合金第二道次热变形时的流变应力水平逐渐降低。在较低的变形温度下(1000℃),δ→γ相变占据主导,保温时间的延长促使铁素体晶界处形成大量的块状奥氏体相,抑制了铁素体再结晶晶粒长大。合金在第二道次热压缩变形时,块状奥氏体相的形成致使铁素体内大量位错发生缠结,并聚集在奥氏体/铁素体相界面处。对比DSS2205和SDSS2507较低温度下的微观组织演变过程可知,双相不锈钢第二道次变形抗力的提高主要与保温过程中铁素体内块状奥氏体相的形成有关。  相似文献   

11.
The design and construction of an apparatus for performing quantitative fretting fatigue experiments is described. The device allows accurate measurement and control of normal contact force, tangential contact force, relative displacement between contacting surfaces and bulk fretting loads, as well as measurement of average friction coefficients. Its design is simple, and includes interchangeable fretting contact pads, allowing the use of various pad geometries without major adjustment. The device incorporates many points of adjustment for alignment and compliance, making it a robust frame for a wide variety of fretting fatigue conditions involving different materials. The capabilities of this device are also verified by results of fretting fatigue experiments conducted on a 7075-T6 aluminium alloy.  相似文献   

12.
A survey of biaxial (bending or tension and torsion) constant amplitude fatigue of welded connections is presented. Re-analysis of 233 experimental results from eight different studies has been performed based on hot spot stresses and three potential damage parameters: maximum principal stress range; maximum shear stress range; and a modified critical plane model for welds. Of the three methods, the critical plane model was most successful in resolving the data to a single S – N line. The design curve for all toe failures based on the critical plane model was FAT 97 with a slope of 3. By excluding butt welds and including only fillet welds that failed at the weld toe, the design curve was increased to FAT 114 with a slope of 3. However, observed scatter was 70–100% larger than that observed in uniaxial loaded specimens analysed using the hot spot approach.  相似文献   

13.
To accurately perform the fatigue assessment of engineering components subjected to in‐service multiaxial fatigue loading, the adopted design criterion must properly be calibrated, the used information usually being the fatigue strength under both pure uniaxial and pure torsional fatigue loading. Because of the complex fatigue response of metallic materials to multiaxial loading paths, the only reliable way to generate the necessary pieces of calibration information is by running appropriate experiments. Unfortunately, because of a lack of both time and resources, very often, structural engineers are requested to perform the multiaxial fatigue assessment by guessing the necessary fatigue properties. In this complex scenario, initially, the available empirical rules suitable for estimating fatigue strength under both pure axial and pure torsional fatigue loading are reviewed in detail. Subsequently, several experimental results taken from the literature and generated by testing metallic materials under a variety of proportional and non‐proportional multiaxial loading paths are used to investigate the way such empirical rules affect the accuracy in estimating fatigue strength, the damage extent being evaluated according to the modified Wöhler curve method. Such a systematic validation exercise allowed us to prove that under proportional loading (with both zero and non‐zero mean stresses), an adequate margin of safety can be reached even when the necessary calibration information is directly estimated from the material ultimate tensile strength. On the contrary, in the presence of non‐proportional loading, the use of the empirical rules reviewed in the present paper can result, under particular circumstances, in a non‐conservative fatigue design.  相似文献   

14.
金属疲劳试验用于测定金属材料的许用疲劳应力,绘制材料的疲劳曲线,进而在交变应力下测定金属材料的疲劳极限。疲劳研究的试验方法有很多,该文根据有关国家标准和现有文献资料对一些常用疲劳试验方法进行了综述,包括单点疲劳试验法、升降法疲劳试验、高频振动疲劳试验法、超声波法疲劳试验、红外热像技术疲劳试验方法,并对每种疲劳试验方法的试验目的、适用条件、试验试样、所需仪器、具体步骤和数据处理进行了介绍。  相似文献   

15.
In the literature there are many experimental results of multiaxial fatigue testing, usually generated by the combination of two or more cyclical loads. The cases in which samples are randomly stressed are rarer. Moreover, to generate particular stress states, the use of specific machinery for fatigue tests is usually required. For these reasons, the authors have created a particular geometry of specimens, which, when solicited by a single input of a random type, guarantees the creation of specific multiaxial stress states without using complex and costly instruments. The experimental tests were finally used for the validation of the multiaxial reduction method developed and currently utilized in the authors' design phase, though potentially used to verify all the other methodologies present in the literature.  相似文献   

16.
A computerized procedure is presented and evaluated for application examples of long-life fatigue analyses of metallic materials under complex multiaxial loading. The method is based on the stress invariants and uses the minimum circumscribed ellipse approach for evaluating the effective shear stress amplitude under complex multiaxial loading. The applicability of the procedure for handling non-proportional loading is examined through typical examples such as combined normal/shear stresses and combined bi-axial normal stresses with complex stress time histories. The effects of phase shift angles, frequency ratios and waveforms on fatigue endurance were re-analysed and compared with available experimental results from the literature. The comparison shows that the presented procedure based on stress invariants is a potential conservative engineering approach, very suitable for fast fatigue evaluation in the integrated computer aided fatigue design.  相似文献   

17.
Fatigue tests were conducted on S45C steel under fully reversed strain control conditions with axial/torsional ( at ) and torsional/axial ( ta ) loading sequences. The linear damage value (n1/N1+n2/N2) was found to depend on the sequence of loading mode ( at or ta ), sequence of strain amplitude (low/high or high/low) and life fraction spent in the first loading. In general, at loading yields larger damage values than ta loading and the low–high sequence of equivalent strain leads to larger damage values than the high–low sequence. The material exhibits cyclic softening under axial cyclic strain. Cyclic hardening occurs in the torsion part of ta loading, which elevates the axial stress in the subsequent loading, causing more damage than in pure axial fatigue at the same strain amplitude. Fatigue life is predicted based on the linear damage rule, the double linear damage rule, the damage curve approach and the plastic work model of Morrow. Results show that overly conservative lives are obtained by these models for at loading while overestimation of life is more likely for ta loading. A modified damage curve method is proposed to account for the load sequence effect, for which predicted lives are found to lie in the factor‐2 scatter band from experimental lives.  相似文献   

18.
The high-cycle fatigue (HCF) behaviour of ductile metals and alloys, and the life-controlling microstructural fatigue mechanisms known from HCF are reviewed critically with respect to their possible role in the gigacycle or ultra-high-cycle fatigue (UHCF) regime. Arguments are presented to support the hypothesis that, at the very low amplitudes of the UHCF regime, fatigue crack initiation, resulting from cyclic strain localization, and slow early Stage I fatigue crack propagation are the life-controlling mechanisms and that these processes can essentially be described in terms of the microstructurally irreversible portion of the cumulative cyclic plastic strain. Emphasis is placed on the important role of the so-called slip irreversibility which decreases as the amplitude becomes lower and lower. Finally, the Manson–Coffin law is reformulated for very low amplitudes in terms of microstructurally relevant parameters, and a fatigue life diagram is developed, based on these preceding microstructural considerations. Important features of this diagram are: (i) the plastic strain fatigue limit in the HCF regime which is related to the threshold for cyclic strain localization in persistent slip bands; and (ii) the transition from this plastic strain fatigue limit to a threshold of negligible slip irreversibility at still lower amplitudes in the UHCF regime.  相似文献   

19.
The work demonstrates how the theory of the fatigue damage map (FDM) can be used in order to define a closed form locus where fatigue crack growth can be sought. The Intrinsic FDM Locus depending only on readily material properties represents a tool able to accurately predict crack growth of polycrystals. If the Locus is expressed in terms of a surface plot after triangulation of the data, it concludes into visualization of the potential for multiple similitude stages. The stages are defined as a function of the maximum far field stress and ΔK. Multiple similitude stages are found to dominate the short and near threshold area (Stage I growth) and represent direct result of the effect of polycrystalline behaviour to flow resistance. The work concludes that interrogation of the points defining the Intrinsic FDM Locus and related to the three thresholds can provide potential characteristics in the quest for an ideal damage tolerance material.  相似文献   

20.
疲劳是金属材料机械构件常见的一种失效形式,疲劳试验方法与数据处理方法一直是研究学者们关注的热点。该文从疲劳寿命和规定寿命下的疲劳强度两个方面介绍了疲劳试验和数据处理方法的主要研究成果,并说明了几种典型的疲劳寿命试验方法与疲劳寿命概率分布参数的统计方法,以及规定寿命下的疲劳强度试验方法与规定寿命下的疲劳强度概率分布参数的统计方法;并通过算例,对比了不同方法之间的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号