首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

2.
A waveguide polarizer exploiting two different phase shift phenomena is presented in this letter. Iris-type discontinuities are in fact introduced in a waveguide structure having different propagation constants for the two principal polarizations. In this way, the required 90 $^circ$ differential phase shift is obtained combining the iris phase shift with the waveguide one. Several operative conditions arise from the combination of the two contributions. This approach has been used to design a broadband waveguide polarizer for the $C$-band antenna feed system of the Sardinia Radio Telescope with ${-}$ 40 dB reflection coefficients and a ${-}$35 dB cross polarization level in a 30% bandwidth.   相似文献   

3.
A self-oscillating mixer that employs both the fundamental and harmonic signals generated by the oscillator subcircuit in the mixing process is experimentally demonstrated. The resulting circuit is a dual-band down-converting mixer that can operate in $C$ -band from 5.0 to 6.0 GHz, or in $X$-band from 9.8 to 11.8 GHz. The oscillator uses active superharmonic coupling to enforce the quadrature relationship of the fundamental outputs. Either the fundamental outputs of the oscillator or the second harmonic oscillator output signals that exists at the common-mode nodes are connected to the mixer via a set of complementary switches. The mixer achieves a conversion gain between 5–12 dB in both frequency bands. The output 1-dB compression points for both modes of the mixer are approximately $-{hbox{5 dBm}}$ and the output third-order intercept point for $C$ -band and $X$ -band operation are 12 and 13 dBm, respectively. The integrated circuit was fabricated in 0.13-$mu {hbox{m}}$ CMOS technology and measures ${hbox{0.525 mm}}^{2}$ including bonding pads.   相似文献   

4.
A compact broadband 8-way Butler matrix integrated with tunable phase shifters is proposed to provide full beam switching/steering capability. The newly designed multilayer stripline Butler matrix exhibits an average insertion loss of 1.1 dB with amplitude variation less than $pm$2.2 dB and an average phase imbalance of less than 20.7$^{circ}$ from 1.6 GHz to 2.8 GHz. The circuit size is only $160times 100 {rm mm}^{2}$, which corresponds to an 85% size reduction compared with a comparable conventional microstrip 8-way Butler matrix. The stripline tunable phase shifter is designed based on the asymmetric reflection-type configuration, where a Chebyshev matching network is utilized to convert the port impedance from 50 $Omega$ to 25 $Omega$ so that a phase tuning range in excess of 120$^{circ}$ can be obtained from 1.6 GHz to 2.8 GHz. To demonstrate the beam switching/steering functionality, the proposed tunable Butler matrix is applied to a 1 $times$ 8 antenna array system. The measured radiation patterns show that the beam can be fully steered within a spatial range of 108 $^{circ}$.   相似文献   

5.
In this paper, a low phase-noise planar oscillator employing an elliptic bandpass filter as a frequency stabilization element within its feedback loop is presented. The oscillator phase noise is significantly reduced by taking advantage of the group-delay peaks formed at the passband edges of the elliptic filter. A filter optimization technique for low phase-noise oscillator designs is introduced and applied to a four-pole bandpass elliptic filter. An $X$-band oscillator using the optimized filter in the feedback loop is designed and tested. At the oscillation frequency of 8.05 GHz, the measured phase noise is $-$143.5 dBc/Hz at 1-MHz offset frequency. The oscillator exhibits an output power of 3.5 dBm with an dc–RF efficiency of 10%. To the authors' best knowledge, this is the lowest phase noise performance for an $X$-band planar microwave oscillator.   相似文献   

6.
In the 2008 IEEE Microwave Theory and Techniques Society International Microwave Symposium Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers for NASA's space-to-Earth communications are presented. The RF power and efficiency of a new $K$-band amplifier are 40 W and 50% and that of a new $Ka$-band amplifier are 200 W and 60%. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a traveling-wave tube (TWT), has improved by a factor of 10 over the previous generation $Ka$-band devices. In this paper, a high power high efficiency $Ka$ -band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90%. In addition, at the design frequency of 32.05 GHz, error-free uncoded binary phase-shift keying/quadrature phase-shift keying (QPSK) data transmission at 8 Mb/s, which is typical for deep-space communications, is demonstrated. Furthermore, QPSK data transmission at 622 Mb/s is demonstrated with a low bit error rate of ${hbox{2.4}}times {hbox{10}}^{-8}$, which exceeds the deep-space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep-space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.   相似文献   

7.
A four-element phased-array front-end receiver based on 4-bit RF phase shifters is demonstrated in a standard 0.18- $mu{{hbox{m}}}$ SiGe BiCMOS technology for $Q$-band (30–50 GHz) satellite communications and radar applications. The phased-array receiver uses a corporate-feed approach with on-chip Wilkinson power combiners, and shows a power gain of 10.4 dB with an ${rm IIP}_{3}$ of $-$13.8 dBm per element at 38.5 GHz and a 3-dB gain bandwidth of 32.8–44 GHz. The rms gain and phase errors are $leq$1.2 dB and $leq {hbox{8.7}}^{circ}$ for all 4-bit phase states at 30–50 GHz. The beamformer also results in $leq$ 0.4 dB of rms gain mismatch and $leq {hbox{2}}^{circ}$ of rms phase mismatch between the four channels. The channel-to-channel isolation is better than $-$35 dB at 30–50 GHz. The chip consumes 118 mA from a 5-V supply voltage and overall chip size is ${hbox{1.4}}times {hbox{1.7}} {{hbox{mm}}}^{2}$ including all pads and CMOS control electronics.   相似文献   

8.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

9.
We propose a novel separated unicast/multicast splitter-and-delivery (SUM-SaD) switch for mixed unicast and multicast traffic. Only multicast connections undergo extra splitting loss but are compensated by incorporated optical amplifiers. A typical multicasting-capable optical cross-connect is constructed by using the proposed SUM-SaDs. Theoretically, we prove that it is strictly nonblocking for both unicast and multicast connections if $d=N/2$, where $N$ and $d$ are the dimension of SUM-SaD and the number of SaD input ports, respectively. Therefore, $d$ means the maximum accommodated trees in the SUM-SaD. To save cost, $d$ can be less than $N/2$ , and the throughput performance is investigated by simulation. The results show that the throughput is improved when $d$ increases. In the experiment, we construct a 4 $times$ 4 SUM-SaD prototype and measure the bit-error rate (BER) of unicast connection, multicast connection with or without optical amplifier. There is no clear BER difference between them for the small dimensional SUM-SaD switch.   相似文献   

10.
We present ultra-broadband wavelength conversion in silicon photonic waveguides at a data rate of 40 Gb/s. The dispersion-engineered device demonstrates a conversion bandwidth spanning the entire $S$-, $C$-, and $L$-bands of the ITU grid. Using a continuous-wave $C$-band pump, an input signal of wavelength 1513.7 nm is up-converted across nearly 50 nm at a data rate of 40 Gb/s, and bit-error-rate measurements are performed on the converted signal.   相似文献   

11.
In this paper, we present the design and development of thin-film liquid-crystal-polymer (LCP) surface-mount packages for $Ka$ -band applications. The packages are constructed using multilayer LCP films and are surface mounted on a printed circuit board (PCB). Our experimental results demonstrate that the package feed-through transition including a PCB launch and bond wires achieve a return loss of better than $-$20 dB and an insertion loss of less than 0.4 dB around $Ka$ -band. We achieve a measured port-to-port isolation of the package to be more than 45 dB across the $Ka$-band. We demonstrate the package feed-through circuit model by comparing the simulation of model and bare die measurement data to a packaged amplifier measurement. Finally, we report an LCP cavity that has a measured fine leak rate of ${hbox{3.6}}times {hbox{10}}^{-8} {hbox{atm}}cdot{hbox{cc/s}}$ .   相似文献   

12.
A wideband low-noise amplifier (LNA) based on the current-reused cascade configuration is proposed. The wideband input-impedance matching was achieved by taking advantage of the resistive shunt–shunt feedback in conjunction with a parallel LC load to make the input network equivalent to two parallel $RLC$-branches, i.e., a second-order wideband bandpass filter. Besides, both the inductive series- and shunt-peaking techniques are used for bandwidth extension. Theoretical analysis shows that both the frequency response of input matching and noise figure (NF) can be described by second-order functions with quality factors as parameters. The CMOS ultra-wideband LNA dissipates 10.34-mW power and achieves ${ S}_{11}$ below $-$8.6 dB, ${ S}_{22}$ below $-$10 dB, ${ S}_{12}$ below $-$26 dB, flat ${ S}_{21}$ of 12.26 $pm$ 0.63 dB, and flat NF of 4.24 $ pm$ 0.5 dB over the 3.1–10.6-GHz band of interest. Besides, good phase linearity property (group-delay variation is only $pm$22 ps across the whole band) is also achieved. The analytical, simulated, and measured results agree well with one another.   相似文献   

13.
We present a design framework that consists of a high-throughput, parallel, and scalable elliptic curve cryptographic (ECC) processor, and its cost-effectiveness methodology for the design exploration. A two-phase scheduling methodology is proposed to optimize the ECC arithmetic over both ${rm GF}(p)$ and ${rm GF}(2^m)$. Based on the methodology, a parallel and scalable ECC architecture is also proposed. Our dual-field ECC architecture supports arbitrary elliptic curves and arbitrary finite fields with different field sizes. The optimization to a variety of applications with different area/throughput requirements can be achieved rapidly and efficiently. Using 0.13-$mu$m CMOS technology, a 160-bit ECC processor core is implemented, which can perform elliptic-curve scalar multiplication in 340 $mu$s over ${rm GF}(p)$ and 155 $mu$s over ${rm GF}(2^m)$, respectively. The comparison of speed and area overhead among different ECC designs justifies the cost-effectiveness of the proposed ECC architecture with its design methodology.   相似文献   

14.
We present ultra-low-voltage circuit design techniques for a fractional-N RF synthesizer with two-point modulation which was realized in 90-nm CMOS using only regular ${rm V}_{rm T}$ devices.; the voltage controlled oscillator, phase-frequency detector and charge pump operate from a 0.5 $~$V supply while the divider uses a 0.65$~$V supply. The frequency synthesizer achieves a phase noise better than $-$120 dBc/Hz at 3 MHz, while consuming 6 mW. A calibration technique to equalize the gain between the two modulation ports is introduced and enables phase/frequency modulation beyond the loop bandwidth of the phase-locked loop. Measurement results for 2-Mb/s GFSK modulation are presented.   相似文献   

15.
In this paper, a broadband self-compensating phase shifter is presented and developed on the basis of substrate integrated waveguide (SIW) technology. Since the SIW is a dispersive guided-wave structure, the effective bandwidth of SIW phase shifter is usually narrow. Phase shifts generated by two different structures, namely delay line and equal-length unequal-width phase shifter, are discovered in this work to present interesting opposite tendencies versus frequency. Therefore, an appropriate combination of them will make the phase shift almost constant over a very wide band. Design equations and process are given following a mathematical analysis. To demonstrate the interesting and useful features of the proposed technique, a 90 $^{circ}$ and a 45 $^{circ}$ self-compensating phase shifters are designed as showcases with standard printed circuit board process. For the 90$^{circ}$ version, the measured amplitude and phase imbalance between the two paths are within 0.2 dB and 2.5$^{circ}$ , respectively, within the frequency band from 25.11 to 39.75 GHz, or around 49% bandwidth. The return loss is found to be better than 12 dB within the frequency band of interest. The 45 $^{circ}$ one has the similar excellent performance. The measurements demonstrate that this type of SIW phase shifter is superior to all of its counterparts.   相似文献   

16.
An $L$-band polarization-independent reflective semiconductor optical amplifier (RSOA) is demonstrated for the first time. Optical gain of greater than 21 dB and gain flatness better than 4 dB is achieved over the $L$-band. The polarization-dependent gain estimated using a polarization resolved spectrum is less than 1 dB over the $L$-band. The measured output saturation power is $-$1.0 dBm and the noise figure (NF) is 10 dB for the packaged device. The 3-dB frequency bandwidth for the device is 1.3 GHz making it suitable for 1.25-Gb/s modulated wavelength-division-multiplexed passive optical network networks. Further, the saturation power and the NF of the RSOA were compared with an SOA of identical length.   相似文献   

17.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

18.
In this letter, we demonstrate a $W$-band photonic transmitter/mixer fabricated by the flip-chip bonding of a high-power back-illuminated near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) and an end-fire quasi-Yagi antenna on an AlN substrate. This end-fire and directional antenna design eliminates the need for the integration of an additional Si-lens into the antenna for directional power transmission. The high bias dependent nonlinearity of the integrated NBUTC-PD means that the bias modulation technique can be used to directly up-convert the intermediate-frequency signal to a millimeter-wave signal at $W$ -band without using a costly high-speed optical modulator. A reasonable detected power ($-$ 17 dBm at 106 GHz) can be achieved with the demonstrated device with a high-output photocurrent (30 mA) and a low internal-conversion loss ($-$2.4 dB) between the radio-frequency and local-oscillator signals at $W$-band.   相似文献   

19.
Bias-temperature-stress (BTS) induced electrical instability of the RF sputter amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) was investigated. Both positive and negative BTS were applied and found to primarily cause a positive and negative voltage shift in transfer $(I _{rm DS} -V _{rm GS})$ characteristics, respectively. The time evolution of bulk-state density $(N _{rm BS})$ and characteristic temperature of the conduction-band-tail-states $(T _{G})$ are extracted. Since both values showed only minor changes after BTS, the results imply that observed shift in TFT $I _{rm DS} -V _{rm GS}$ curves were primarily due to channel charge injection/trapping rather than defect states creation. We also demonstrated the validity of using stretch-exponential equation to model both positive and negative BTS induced threshold voltage shift $(Delta V _{rm th})$ of the a-IGZO TFTs. Stress voltage and temperature dependence of $Delta V _{rm th}$ evolution are described.   相似文献   

20.
We demonstrated a 25-Gb/s direct modulation up to 85 $^{circ}$C with a 1.3- $mu$m InGaAlAs ridge-waveguide multiple-quantum-well distributed-feedback laser. The dependence of the relaxation oscillation frequency on current was 3.3 GHz/mA$^{1 / 2}$, and this is the highest value ever reported for 200-$mu$m-long lasers in the 1.3-$mu$m wavelength region. The $alpha$ parameter was around 2.7 at 25 $^{circ}$C, and an error-free operation after a 10-km single-mode fiber transmission was obtained up to 85 $^{circ}$C.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号