首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction mechanism of the reduction of nitrogen monoxide by methane in an oxygen excess atmosphere (NO–CH4–O2 reaction) catalyzed by Pd/H-ZSM-5 has been studied at 623–703 K in the absence of water vapor, in comparison with the mechanism for Co-ZSM-5. Kinetic isotope effect for the N2 formation in NO–CH4–O2 vs. NO–CD4–O2 reactions was 1.65 at 673 K and decreased with a decrease in the reaction temperature. In addition, H–D isotopic exchange took place significantly in NO–(CH4+CD4)–O2 reaction. These results are in marked contrast with the case of Co-ZSM-5, for which the C–H dissociation of methane is the only rate-determining step, and show that the C–H dissociation is slow but not the only rate-determining step in the case of Pd/H-ZSM-5.

A reaction scheme was proposed, in which the relative rates of the three steps ((i)–(iii) below) vary depending on the reaction conditions.

Further, in contrast to Co-ZSM-5, NOx–CH4–O2 reaction was much slower than CH4–O2 reaction for Pd/H-ZSM-5; the presence of NOx retards the reaction of CH4 over the latter catalyst, while it accelerates the reaction over the former. It is suggested that CH4 is activated directly by the Pd atoms in the case of Pd/H-ZSM-5, but by NO2 strongly adsorbed on Co ion for Co-ZSM-5. The reaction order of the NO–CH4–O2 reaction with respect to NO pressure was consistent with this mechanism; 1.05 for Pd/H-ZSM-5 and 0.11 for Co-ZSM-5.  相似文献   

2.
In order to meet the stringent regulatory norms of NOx and CO emitted by automobiles, reduction of these pollutants has become an intense field of research. Various catalysts like Pt, Rh, Ir, Cu, and Fe have been found to possess high activity for the reduction of NO. However, the available detailed surface reaction mechanisms are not satisfactory in clarifying all the aspects of the simultaneous reduction of NO and oxidation of CO. Here we have developed a quantitative surface reaction mechanism based on elementary steps, in order to comprehend the phenomena of catalytic reduction of NO by CO. Eleven elementary steps are proposed for the NO–CO and NO–CO–O2 systems on Pt group catalysts. The elementary reaction mechanism is coupled with the continuously stirred tank reactor/packed bed reactor models and the simulation results are validated against literature experiments for the NO–CO reaction on Pt, and the NO–CO–O2 reaction on Ir catalyst. Despite the simplicity, the CSTR model is able to capture the observed phenomena well on Pt and Ir catalysts. The effect of O2 on the activity of CO for NO reduction is also analysed in detail through the simulations.  相似文献   

3.
Catalytic activity of H- and FeH-ferrierite (FER) zeolites with iron content from 50 to 4000 ppm in NO–NO2 equilibration and SCR of NOx by propane was measured, both in NO2-poor and NO2-rich streams. The activity of FeH-FER in SCR in NO2-poor streams depends strongly on the Fe content; this relationship is valid down to traces of iron, while no such correlation was indicated in NO2-rich streams. This was rationalized by realizing the negligible activity of zeolite protons for NO–NO2 equilibration. Accordingly the SCR activity of H-FER in NO2-poor streams necessitates presence of iron traces. In the NO2–O2–propane mixtures a process in absence of zeolite catalyst initiating propane oxidation and NO2→NO conversion, but without N2 formation, was evidenced at temperatures over 350 °C. It is suggested that such a radical process participate in characteristic narrow temperature window for NOx reduction by propane.  相似文献   

4.
The effect of additives on Pt-ZSM-5 catalysts was studied for the selective NO reduction by H2 in the presence of excess O2 (NO–H2–O2 reaction) at 100 °C. The reaction of NO in a stream of 0.08% NO, 0.28% H2, 10% O2, and He balance yielded N2 with less than 10% selectivity, which could not be increased by changing Pt loading or H2 concentration in the gas feed. Co-impregnation of NaHCO3 and Pt onto ZSM-5 decreased the BET surface area and the Pt dispersion. Nevertheless, the Na-loaded catalyst (Na-Pt-ZSM-5) exhibited the higher NOx conversion (>90%) and the N2 selectivity (ca. 50%). Such a high catalytic activity even at high Na loadings (≥10 wt.%) is completely contrast to other Na-added Pt catalyst systems reported so far. Further improvement of N2 selectivity was attained by the post-impregnation of NaHCO3 onto Pt-ZSM-5. In situ DRIFT measurements suggested that the addition of Na promotes the adsorption of NO as NO2-type species, which would play a role of an intermediate to yield N2. The introduction of Lewis base to the acidic supports including ZSM-5 would be applied to the catalyst design for selective NO–H2–O2 reaction at low temperatures.  相似文献   

5.
The active site in ZSM-5 zeolite-supported palladium, which shows the catalytic activity for NO reduction with methane as a reducing agent, has been investigated qualitatively and quantitatively by means of NO chemisorption and NaCl titration, comparing with PdO supported on silica. Palladium species in 0.4 wt.% Pd loaded H-ZSM-5 can adsorb NO equimolarly after calcination at 773 K, and almost all the NO was desorbed at around 673 K, while the palladium species on PdO/SiO2 hardly adsorbed NO. The palladium species in Pd(0.4)/H-ZSM-5 are ion-exchangeable with Na+ in NaCl solution, indicating that they exist in a cationic state of an isolated Pd2+. This method for quantitative analysis of the isolated Pd2+ cations is named as ‘NaCl titration’. The amount of the isolated Pd2+ cationic species increased with increasing palladium content on Pd/H-ZSM-5, and PdO co-existed above 1 wt.%. The amount of the isolated Pd2+ cation was unchanged after the reaction of NO2–CH4, NO2–CH4–O2, or CH4–O2 at 673 K, while the adsorbed amount of NO per the Pd2+ as determined by NO-TPD decreased after the NO2–CH4–O2 reaction. It was found by NaCl titration that the catalytic activity of Pd/H-ZSM-5 for NO2–CH4–O2 reaction increased with increasing amount of the isolated Pd2+ cationic species up to 0.7 wt.%, while the increase in the amount of PdO led to decrease in selectivity towards NO2 reduction. The palladium species that are active and selective for NO reduction with CH4 will be proposed.  相似文献   

6.
Catalytic performances of ZSM-5 based catalysts containing indium or palladium were examined for NO reduction with CH4 and NOx chemisorption. The amounts of NOx chemisorbed on In/H-ZSM-5 were well proportional to the catalytic activities for NOx reduction. Pd/H-ZSM-5, on the other hand, hardly chemisorbed NO2, while the catalytic activity for NO2 reduction with CH4 is very high. Furthermore, Pd loaded on SiO2 showed comparably high catalytic activity for NO2 reduction with CH4 at 400°C in the absence of oxygen as Pd/H-ZSM-5. CH4 combustion during NOx reduction with CH4 in the presence of oxygen significantly occurred over PdO on SiO2, while less over Pd/H-ZSM-5. The role of zeolite might be slightly different between In/H-ZSM-5 and Pd/H-ZSM-5: the zeolitic porous structure is needed for In/H-ZSM-5 in order to concentrate NO2 adspecies on InO+ sites, which is important for NO reduction with CH4 on In/H-ZSM-5 based catalysts, while the ion-exchangeable ability of zeolite is needed for Pd/H-ZSM-5 in order to make Pd2+ located in a highly dispersed state, on which NO is strongly chemisorbed.  相似文献   

7.
The reaction between hydrogen and NO was studied over 1 wt.% Pd supported on NOx-sorbing material, MnOx–CeO2, at low temperatures. The result of pulse mode reactions suggest that NOx adsorbed as nitrate and/or nitrite on MnOx–CeO2 was reduced by hydrogen, which was spilt-over from Pd catalyst. The NOx storage and reduction (NSR) cycles were carried out over Pd/MnOx–CeO2 in a conventional flow reactor at 150 °C. In a storage step, NO was removed by the oxidative adsorption from a stream of 0.04–0.08% NO, 5–10% O2, and He balance. This was followed by a reducing step, where a stream of 1% H2/He was supplied to ensure the conversion of nitrate/nitrite to N2 and thus restore the adsorbability. It was revealed that the NSR cycle is much more suitable for the H2–deNOx process in excess O2, compared to a conventional steady state reaction mode.  相似文献   

8.
Free energy minimization calculations are used to determine the thermodynamic equilibrium concentrations of NOx and other species in stoichiometric and lean gas mixtures over a range of temperatures and compositions. Under lean (excess N2 and O2) conditions, the NO decomposition (NO↔(1/2)N2+(1/2)O2) and NO oxidation (NO+(1/2)O2↔NO2) equilibria impose lower bounds on the NOx concentrations achievable by thermodynamic equilibration or NOx decomposition, and these equilibrium NOx concentrations can be practically significant. Assuming a perfect isothermal catalyst acting on a representative diesel exhaust stream collected over the federal test procedure (FTP) cycle, equilibrium NOx levels exceed upcoming California Low Emission Vehicle II (LEV-II) and Tier II NOx emissions standards for automobiles and trucks at temperatures above approximately 800 K. Consideration of a perfect adiabatic catalyst acting on the same diesel exhaust shows that equilibrium NOx values can fall below NOx emissions standards at lower temperatures, but to achieve these low concentrations would require the catalyst to attain 100% approach to equilibrium at very low temperatures. It is concluded that NOx removal based on a thermodynamic equilibrating catalyst under lean exhaust conditions is not practically viable for automotive application, and that to achieve upcoming NOx standards will require selective NOx catalysts that vigorously promote NOx reactions with reductant and do not promote NO decomposition or oxidation. Finally, the ability of a selective NOx catalyst system to reduce NOx concentrations to or below thermodynamic equilibrium values is proposed as a useful measure for selective catalytic reduction (SCR) activity.  相似文献   

9.
A series of sulfated zirconia supported Pd/Co catalysts was synthesized by the sol–gel method and examined for NOx reduction by methane. The NO conversion increased up to a Co/S ratio of 0.43, and then decreased at a higher Co loading (Co/S = 0.95). Sulfate content was also essential for obtaining high selectivity to molecular nitrogen. A catalyst loaded with 0.06 wt.% Pd, 2.1 wt.% Co and 2.1 wt.% S (Pd/Co-SZ-2) exhibited remarkable performance under lean conditions and displayed stability in a long-term durability test using a synthetic reaction mixture containing 10% water vapor. This catalyst exhibited the highest sulfur retention most probably as cobalt sulfide. Besides, the catalytic oxidation of NO to NOy groups was confirmed by FT-IR, in agreement with the general mechanism for the SCR of NO by hydrocarbons. In the absence of oxygen in the feed stream, the catalyst was highly active for NO reduction with methane. IR stretching bands assigned to N2O and adsorbed nitro groups were identified upon adsorbing NO on Pd/Co-SZ-2. This indicates that under rich conditions disproportionation of NO to N2O and NO2 occurs and confirms that the formation of NO2 species is an essential step for NO reduction by CH4.  相似文献   

10.
Characteristics of MnOy–ZrO2 and Pt–ZrO2–Al2O3 as reversible sorbents of NOx were investigated under dynamic changes in atmosphere. These sorbents can be used reversibly with a change of C3H8 concentration in the reaction gases. Catalytic reduction of NO occurred in the presence of propane, which was more pronounced on Pt–ZrO2–Al2O3 than on MnOy-ZrO2 due to high activity of Pt surface for this reaction on MnOy in MnOy–ZrO2. The sorption was observed as soon as the atmosphere changed from a reducing to an oxidizing one. This implies that a high equilibrium partial pressure of O2 is necessary for NO uptake since the sorbed NO3 species becomes stable. The beginning of NOx desorption atmospheres was somewhat dependent on the amount of stored NOx. The presence of propane in the gas phase strongly affected the characteristic sorption and desorption properties of MnOy–ZrO2 and Pt–ZrO2–Al2O3. The sorption and desorption properties are different for MnOy–ZrO2 and Pt–ZrO2–Al2O3, since the noble metal or metal oxide possesses unique activity for the NO reaction with C3H8 and the amount of oxygen available for oxidative sorption of NO.  相似文献   

11.
The reaction condition for high yield of methanol in a gaseous reaction between methane and oxygen in the presence of NO at atmospheric pressure was explored. Methane partial oxidation without NO (CH4–O2) gave only 1% conversion of methane at 966 K. The addition of NO led to a remarkable increase in methane conversion and to high selectivity to C1-oxygenates. The conversion of methane attained 10% at 808 K in the presence of NO (0.5%) where the selectivities to methanol and formaldehyde were 22.1 and 24.1%, respectively. Nitromethane and carbon oxides were also observed in the product gas. The amount of nitromethane was almost equal and/or near to that of initial NO. The carbon monoxide produced was several times higher than carbon dioxide. Influences of NO concentration, ratio of methane to oxygen, water vapor, and dilution with helium gas on product distribution were measured. Low concentration of NO (0.35–0.55%) was favorable for methanol formation. High selectivity to methanol was obtained at low value of the ratio of methane to oxygen (2.0–3.0) or low concentration of dilution gas (<16%). The NO2 added promoted methane partial oxidation and selectivity to methanol. Therefore, it was assured that NOx promoted the formation of CH3√ and CH3O√ in the gas phase reaction for CH4–O2–NO.  相似文献   

12.
The selective catalytic reduction of NO+NO2 (NOx) at low temperature (180–230°C) with ammonia has been investigated with copper-nickel and vanadium oxides supported on titania and alumina monoliths. The influence of the operating temperature, as well as NH3/NOx and NO/NO2 inlet ratios has been studied. High NOx conversions were obtained at operating conditions similar to those used in industrial scale units with all the catalysts. Reaction temperature, ammonia and nitrogen dioxide inlet concentration increased the N2O formation with the copper-nickel catalysts, while no increase was observed with the vanadium catalysts. The vanadium-titania catalyst exhibited the highest DeNOx activity, with no detectable ammonia slip and a low N2O formation when NH3/NOx inlet ratio was kept below 0.8. TPR results of this catalyst with NO/NH3/O2, NO2/NH3/O2 and NO/NO2/NH3/O2 feed mixtures indicated that the presence of NO2 as the only nitrogen oxide increases the quantity of adsorbed species, which seem to be responsible for N2O formation. When NO was also present, N2O formation was not observed.  相似文献   

13.
The interactions NO—CO and O2—NO—CO have been studied onCuCo2O4γ-Al2O3 and on γ-Al2O3- and CuCo2O4γ-Al2O3-supported Pt, Rh and Pt—Rh catalysts. The deposition of noble metals (Pt, Rh and Pt—Rh) on CuCo2O4γ-Al2O3 instead of γ-Al2O3 is beneficial in: lowering the temperature at which maximum N2O is formed and decreasing the maximum N2O concentration attained; lowering the onset temperature of NO to N2 reduction, and increasing the N2 selectivity; preserving the activity towards NO to N2 reduction on a higher level following the concentration step NO + COO2+ NO + CO and changing the conditions from stoichiometric to oxidizing (50% excess of oxidants). The reason for this behaviour of the CuCo2O4γ-Al2O3-based noble metal catalysts is the formation (reversible) of a reduced surface layer on the CuCo2O4 supported spinel under the conditions of a stoichiometric NO + CO mixture.  相似文献   

14.
SO2 and NO emitted from coal-fired power plants have caused serious air pollution in China. In this study, a test system for NO oxidation using O3 is established. The basic characteristics of NO oxidation and products forms are studied. A separate test system for the combined removal of SO2 and NOx is also established, and the absorption characteristics of NOx are studied. The characteristics of NO oxidation and NOx absorption were verified in a 35 t·h-1 industrial boiler wet combined desulfurization and denitrification project. The operating economy of ozone oxidation wet denitrification technology is analyzed. The results show that O3 has a high rate and strong selectivity for NO oxidation. When O3 is insufficient, the primary oxidation product is NO2. When O3 is present in excess, NO2 continues to get oxidized to N2O5 or NO3. The removal efficiency of NO2 in alkaline absorption system is low (only about 15%). NOx removal efficiency can be improved by oxidizing NOx to N2O5 or NO3 by increasing ozone ratio. When the molar ratio of O3/NO is 1.77, the NOx removal efficiency reaches 90.3%, while the operating cost of removing NOx per kilogram is 6.06 USD (NO2).  相似文献   

15.
Mixed oxides of the general formula La0.5SrxCeyFeOz were prepared by using the nitrate method and characterized by XRD and Mössbauer techniques. The crystal phases detected were perovskites LaFeO3 and SrFeO3−x and oxides -Fe2O3 and CeO2 depending on x and y values. The low surface area ceramic materials have been tested for the NO+CO and NO+CH4+O2 (“lean-NOx”) reactions in the temperature range 250–550°C. A noticeable enhancement in NO conversion was achieved by the substitution of La3+ cation at A-site with divalent Sr+2 and tetravalent Ce+4 cations. Comparison of the activity of the present and other perovskite-type materials has pointed out that the ability of the La0.5SrxCeyFeOz materials to reduce NO by CO or by CH4 under “lean-NOx” conditions is very satisfying. In particular, for the NO+CO reaction estimation of turnover frequencies (TOFs, s−1) at 300°C (based on NO chemisorption) revealed values comparable to Rh/-Al2O3 catalyst. This is an important result considering the current tendency for replacing the very active but expensive Rh and Pt metals. It was found that there is a direct correlation between the percentage of crystal phases containing iron in La0.5SrxCeyFeOz solids and their catalytic activity. O2 TPD (temperature-programmed desorption) and NO TPD studies confirmed that the catalytic activity for both tested reactions is related to the defect positions in the lattice of the catalysts (e.g., oxygen vacancies, cationic defects). Additionally, a remarkable oscillatory behavior during O2 TPD studies was observed for the La0.5Sr0.2Ce0.3FeOz and La0.5Sr0.5FeOz solids.  相似文献   

16.
K. Vaezzadeh  C. Petit  V. Pitchon   《Catalysis Today》2002,73(3-4):297-305
NOx sorption and reduction capacities of 12-tungstophosphoric acid hexahydrate (H3PW12O40·6H2O, HPW) were measured under representative alternating conditions of lean and rich exhaust-type gas mixture. Under lean conditions, the sorption of NOx is large and is equivalent to 37 mg of NOx/gHPW. Although a part of these NOx remains unreduced, HPW is able to reduce some of the NOx to produce N2 by a reaction between the sorbed NO2 and hydrocarbon (HC), but this process is slow. The addition of 1% Pt affects strongly the chemical behaviour occurring during the course of a rich operation. The NO desorption observed at the beginning of the rich phase is strongly accelerated. The direct correlation between NO2 consumption and CO2 production shows that the principal pathway is the reaction CO+NO2→CO2+NO. In a mixture of reducing gas (CO, HC, H2), the competition is strongly in favour of CO though in its absence the reaction observed was the hydrogenation of propene to propane.  相似文献   

17.
Selective catalytic reduction of NOx (SCR-NOx) with decane, and for comparison with propane and propene over Cu-ZSM-5 zeolite (Cu/Al 0.49, Si/Al 13.2) was investigated under presence and absence of water vapor. Decane behaves in SCR-NOx like propene, i.e. the Cu-zeolite activity increased under increasing concentration of water vapor, as demonstrated by a shift of the NOx–N2 conversion to lower temperatures, in contrast to propane, where the NOx–N2 conversion is highly suppressed. In situ FTIR spectra of sorbed intermediates revealed similar spectral features for C10H22– and C3H6–SCR-NOx, where –CHx, R–NO2, –NO3, Cu+–CO, –CN, –NCO and –NH species were found. On contrary, with propane –CHx, R–NO2, NO3, Cu+–CO represented prevailing species. A comparison of the in situ FTIR spectra (T–O–T and intermediate vibrations) recorded at pulses of propene and propane, moreover, under presence and absence of water vapor in the reaction mixture, revealed that the Cu2+–Cu+ redox cycle operates with the C3H6–SCR-NOx reactions in both presence/absence of water vapor, while with C3H8–SCR-NOx, the redox cycle is suppressed by water vapor. It is concluded that decane cracks to low-chain olefins and paraffins, the former ones, more reactive, preferably take part in SCR-NOx. It is concluded that formation of olefinic compounds at C10H22–SCR-NOx is decisive for the high activity in the presence of water vapor, while water molecules block propane activation. The increase in NOx–N2 conversion due to water vapor in C10H22–SCR-NOx should be connected with the increased reactivity of intermediates. These are suggested to pass from R–NOx → –CN → –NCO → NH3; the latter reacts with another activated NOx molecule to molecular nitrogen. The positive effect of water vapor on the NOx–N2 conversion is attributed to increased hydrolysis of –NCO intermediates.  相似文献   

18.
The role of a multifunctional catalyst for de-NOx process has been investigated. The NOx storage capacity of H3PW12O40·6H2O (HPW) was improved by the presence of a noble metal (Pt, Rh or Pd). Both HPW and noble metal were deposited on a specific support (based on Zr–Ce or Zr–Ti). The presence of noble metal in several oxidation states, as evidenced by TPR and IR, involves the possibility of forming different catalytic sites: (i) M0 (zero-valent metal) and perhaps (ii) (metal–H)δ+ from specific interactions between noble metal and the HPW proton. Supports were also able to adsorb and activate NOx and to generate cationic catalytic sites (Mx+). These cationic sites seem to be the clue for their important activity toward NOx reduction. This catalyst presents an outstanding resistance to SO2 poisoning which can be related to NO and NO2 absorption mechanism in HPW. The use of alternating short cycles of lean/rich mixtures allows us optimising the performance of this catalytic system in terms of both NOx reduction capacity and NOx storage efficiency: up to 48 and 84%, respectively (with a 2% CO + 1% H2 mixture for reducing). Experimental results sustain two hypotheses: first, HPW-metal-support catalyst includes several (independent) catalytic functions required for a de-NOx process to occur and second, the formation of oxygenate active species must be indispensable for NOx reduction into nitrogen.  相似文献   

19.
Noble metal (Rh, Pt, Pd, Ir, Ru, and Ag) and Ni catalysts supported on CeO2–Al2O3 were investigated for water gas shift reaction at ultrahigh temperatures. Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 demonstrated as the best catalysts in terms of activity, hydrogen yield and hydrogen selectivity. At 700 °C and steam to CO ratio of 5.2:1, Pt/CeO2–Al2O3 converted 76.3% of CO with 94.7% of hydrogen selectivity. At the same conditions, the activity and hydrogen selectivity for Ru/CeO2–Al2O3 were 63.9% and 85.6%, respectively. Both catalysts showed a good stability over 9 h of continuous operation. However, both catalysts showed slight deactivation during the test period. The study revealed that Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 were excellent ultrahigh temperature water gas shift catalysts, which can be coupled with biomass gasification in a downstream reactor.  相似文献   

20.
On an anodic alumina supported silver catalyst with a low Ag loading (1.68 wt.%), NOx (NO/He, NO/O2/He, NO2/He) adsorption measurements and NOx-temperature programmed decomposition (TPD)/temperature programmed surface-reaction (TPSR) measurements in different gas streams (He, C3H6/He, C3H6/O2/He) were conducted to investigate the formation, consumption and reactivity of surface adsorbed NOx species.

During NO adsorption, no noticeable uptake of NO was detected. Introducing oxygen greatly improved the formation of ads-NOx species. A greater quantity of surface nitrate species was found after NO2 adsorption, accompanied with gaseous NO release. The result of TPSR demonstrates the surface nitrate species can be effectively and preferentially reduced by propene. When introducing oxygen into the propene gas stream of TPSR test, the significantly increased amount of reacted nitrate undoubtedly shows the importance of oxygen in activating propene. The pathway for the selective reduction of NOx in the presence of excess oxygen is proposed to pass through the selective reduction of the adsorbed nitrate species with the activated propene.

The enhanced NOx conversion when replacing NO with NO2 was attributed to the stronger NOx adsorption capacity and oxidation ability of NO2, than those for NO. With increasing oxygen concentration, the difference between NO and NO2 would gradually decrease, and finally disappear in a high excess of oxygen.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号