首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.  相似文献   

2.
3.
Carbon is a unique and versatile element that is capable of forming different architectures at nanoscale. The element has become a key component in nanoscience and nanotechnology. Transmission electron microscopy (TEM) acts as “our eyes” enabling us not only to reveal the morphology, but also to provide structural, chemical and electronic information of nanocarbon on the atomic level. In fact, except for fullerene, nearly all types of carbon nanomaterials were discovered by TEM, such as carbon nanotubes, carbon nanocones, and graphene‐like nanocarbon. It cannot be imagined what nanoscience and nanotechnology would be without the contributions of TEM. Herein, the “interaction” between TEM and the science of carbon nanomaterials is reviewed and it is demonstrated for some selected examples that TEM provides a dramatic driving force for the development of nanocarbon science.  相似文献   

4.
高熵会带来热力学上的高熵效应、结构上的晶格畸变效应、动力学上的迟滞扩散效应以及性能上的"鸡尾酒"效应,通过高熵设计来提高陶瓷材料的性能是目前研究的热点,而通过透射电镜揭示高熵结构及其与性能相关性的研究还很缺乏。本研究以相应金属氧化物、碳化硼和石墨为原材料,在制备高熵硼化物和高熵碳化物粉体的基础上,利用放电等离子体烧结制备得到高熵(TiZrHfNbTa)B2和(TiZrHfNbTa)C陶瓷。采用透射电子显微镜及其能谱分析手段对两种高熵陶瓷进行了纳米尺度和原子尺度的结构表征,发现过渡金属元素固溶后保持了晶体结构的完整性,五种元素分布均匀,但在原子尺度存在固溶元素的浓度振荡、原子离散和晶格应变。本工作获得的原子尺度的固溶结构信息将有助于对高熵陶瓷构效关系的理解,并为高熵陶瓷的组分和结构设计提供实验依据。  相似文献   

5.
扫描透射电子显微镜(STEM)原子序数衬度像(Z-衬度像)具有分辨率高(可直接“观察”到晶体中原子的真实位置)、对化学组成敏感以及图像直观易解释等优点, 成为原子尺度研究材料微结构的强有力工具。本文介绍了STEM Z-衬度像成像原理、方法及技术特点, 并结合具体的高K栅介质材料 (如铪基金属氧化物、稀土金属氧化物和钙钛矿结构外延氧化物薄膜)对STEM在新一代高K栅介质材料研究中的应用进行了评述。 目前球差校正STEM Z-衬度的像空间分辨率已达亚埃级, 该技术在高K柵介质与半导体之间的界面微结构表征方面具有十分重要的应用。对此, 本文亦进行了介绍。  相似文献   

6.
Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well‐defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm‐diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub‐micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position.  相似文献   

7.
With the recent development of high-acquisition-speed pixelated detectors, 4D scanning transmission electron microscopy (4D-STEM) is becoming routinely available in high-resolution electron microscopy. 4D-STEM acts as a “universal” method that provides local information on materials that is challenging to extract from bulk techniques. It extends conventional STEM imaging to include super-resolution techniques and to provide quantitative phase-based information, such as differential phase contrast, ptychography, or Bloch wave phase retrieval. However, an important missing factor is the chemical and bonding information provided by electron energy loss spectroscopy (EELS). 4D-STEM and EELS cannot currently be acquired simultaneously due to the overlapping geometry of the detectors. Here, the feasibility of modifying the detector geometry to overcome this challenge for bulk specimens is demonstrated, and the use of a partial or defective detector for ptycholgaphic structural imaging is explored. Results show that structural information beyond the diffraction-limit and chemical information from the material can be extracted together, resulting in simultaneous multi-modal measurements, adding the additional dimensions of spectral information to 4D datasets.  相似文献   

8.
电子散射和电子透过率是影响厚膜样品扫描透射电镜成像及其检测应用的重要因素。本文根据样品材料中电子的弹性散射和非弹性散射模型,采用蒙特卡罗方法模拟了能量为100~300 keV的电子在微米级厚非晶薄膜样品中的散射过程,并计算了在扫描透射电镜明场模式下的电子透过率特性。电子透射厚样品的散射次数和出射角分布都由于样品厚度的增大而明显增大且展宽。所获得的电子透过率随样品厚度的变化规律与文献中实验报道一致。分析了入射电子能量、接收半张角及样品材料类型等参数对电子透过率的影响。结果表明电子透过率随着电子能量的提高而增大,随着样品材料的原子序数和密度的增大而减小。模拟结果还证实,部分电子经多重弹性散射而返回接收半张角会使电子透过率的减小偏离指数线性变化。  相似文献   

9.
High‐resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in‐situ microscopy for studying dynamic shape transformation of nanocrystals; in‐situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration‐free angstrom‐resolution imaging of light elements (such as oxygen and lithium); high‐angle annular‐dark‐field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high‐spatial resolution electron energy‐loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer‐scale science provided by HRTEM is the foundation of nanometer‐scale technology.  相似文献   

10.
11.
Energy devices such as rechargeable batteries, fuel cells, and solar cells are central to powering a renewable, mobile, and electrified future. To advance these devices requires a fundamental understanding of the complex chemical reactions, material transformations, and charge flow that are associated with energy conversion processes. Analytical in situ transmission electron microscopy (TEM) offers a powerful tool for directly visualizing these complex processes at the atomic scale in real time and in operando. Recent advancements in energy materials and devices that have been enabled by in situ TEM are reviewed. First, the evolutionary development of TEM nanocells from the open‐cell configuration to the closed‐cell, and finally the full‐cell, is reviewed. Next, in situ TEM studies of rechargeable ion batteries in a practical operation environment are explored, followed by applications of in situ TEM for direct observation of electrocatalyst formation, evolution, and degradation in proton‐exchange membrane fuel cells, and fundamental investigations of new energy materials such as perovskites for solar cells. Finally, recent advances in the use of environmental TEM and cryogenic electron microscopy in probing clean‐energy materials are presented and emerging opportunities and challenges in in situ TEM research of energy materials and devices are discussed.  相似文献   

12.
13.
Layered MoS2 is a prospective candidate for use in energy harvesting, valleytronics, and nanoelectronics. Its properties strongly related to its stacking configuration and the number of layers. Due to its atomically thin nature, understanding the atomic‐level and structural modifications of 2D transition metal dichalcogenides is still underdeveloped, particularly the spatial control and selective precision. Therefore, the development of nanofabrication techniques is essential. Here, an atomic‐scale approach used to sculpt 2D few‐layer MoS2 into lateral heterojunctions via in situ scanning/transmission electron microscopy (STEM/TEM) is developed. The dynamic evolution is tracked using ultrafast and high‐resolution filming equipment. The assembly behaviors inherent to few‐layer 2D‐materials are observed during the process and included the following: scrolling, folding, etching, and restructuring. Atomic resolution STEM is employed to identify the layer variation and stacking sequence for this new 2D‐architecture. Subsequent energy‐dispersive X‐ray spectroscopy and electron energy loss spectroscopy analyses are performed to corroborate the elemental distribution. This sculpting technique that is established allows for the formation of sub‐10 nm features, produces diverse nanostructures, and preserves the crystallinity of the material. The lateral heterointerfaces created in this study also pave the way for the design of quantum‐relevant geometries, flexible optoelectronics, and energy storage devices.  相似文献   

14.
In situ transmission electron microscopy (TEM) is one of the most powerful approaches for revealing physical and chemical process dynamics at atomic resolutions. The most recent developments for in situ TEM techniques are summarized; in particular, how they enable visualization of various events, measure properties, and solve problems in the field of energy by revealing detailed mechanisms at the nanoscale. Related applications include rechargeable batteries such as Li-ion, Na-ion, Li–O2, Na–O2, Li–S, etc., fuel cells, thermoelectrics, photovoltaics, and photocatalysis. To promote various applications, the methods of introducing the in situ stimuli of heating, cooling, electrical biasing, light illumination, and liquid and gas environments are discussed. The progress of recent in situ TEM in energy applications should inspire future research on new energy materials in diverse energy-related areas.  相似文献   

15.
Liquid‐phase transmission electron microscopy (TEM) is used for in‐situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut‐shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid‐phase STEM experiments on silica‐based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid.  相似文献   

16.
Carbonaceous materials are promising sodium-ion battery anodes. Improving their performance requires a detailed understanding of the ion transport in these materials, some important aspects of which are still under debate. In this work, nitrogen-doped porous hollow carbon spheres (N-PHCSs) are employed as a model system for operando analysis of sodium storage behavior in a commercial liquid electrolyte at the nanoscale. By combining the ex situ characterization at different states of charge with operando transmission electron microscopy experiments, it is found that a solvated ionic layer forms on the surface of N-PHCSs at the beginning of sodiation, followed by the irreversible shell expansion due to the solid-electrolyte interphase (SEI) formation and subsequent storage of Na(0) within the porous carbon shell. This shows that binding between Na(0) and C creates a Schottky junction making Na deposition inside the spheres more energetically favorable at low current densities. During sodiation, the SEI fills the gap between N-PHCSs, binding spheres together and facilitating the sodium ions' transport toward the current collector and subsequent plating underneath the electrode. The N-PHCSs layer acts as a protective layer between the electrolyte and the current collector, suppressing the possible growth of dendrites at the anode.  相似文献   

17.
Structural characterisation of individual molecules by high‐resolution transmission electron microscopy (HRTEM) is fundamentally limited by the element and electron energy‐specific interactions of the material with the high energy electron beam. Here, the key mechanisms controlling the interactions between the e‐beam and C–H bonds, present in all organic molecules, are examined, and the low atomic weight of hydrogen—resulting in its facile atomic displacement by the e‐beam—is identified as the principal cause of the instability of individual organic molecules. It is demonstrated theoretically and proven experimentally that exchanging all hydrogen atoms within molecules with the deuterium isotope, and therefore doubling the atomic weight of the lightest atoms in the structure, leads to a more than two‐fold increase in the stability of organic molecules in the e‐beam. Substitution of H for D significantly reduces the amount of kinetic energy transferred from the e‐beam to the atom (main factor contributing to stability) and also increases the barrier for bond dissociation, primarily due to the changes in the zero‐point energy of the C–D vibration (minor factor). The extended lifetime of coronene‐d12, used as a model molecule, enables more precise analysis of the inter‐molecular spacing and more accurate measurement of the molecular orientations.  相似文献   

18.
Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures.At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns.This allows the determination of the geometry of the projected unit cell without comparison with image simulations.The fast procedure is particularly suited for the analysis of large areas.The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis.Image iintensity peaks are determined by a cross-correlation technique,which avoids problems from noise in the low spatial frequency renage.The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is ≈2%.  相似文献   

19.
球差校正扫描透射电子显微镜(STEM)因其原子级的空间分辨率和元素解析能力,在纳米功能材料的结构和成分分析中得到广泛使用。扫描透射电子显微镜高角环形暗场像技术(STEM-HAADF)凭借独特的原子序数衬度(Z衬度)和电子通道效应,在负载型纳米催化剂的结构研究中有着显著优势。通过STEM-HAADF成像,研究人员不仅可以直接观测到单个贵金属原子在较轻的载体上的实空间分布,还可以实现对载体表面上不同的负载贵金属物种的统计分析,这为近十年兴起的单原子催化剂研究提供了最重要的结构分析支持。相对于STEM-HAADF成像,基于STEM的X射线能谱(EDS)和电子能量损失谱(EELS)的谱学分析技术则能够在纳米尺度乃至原子尺度提供直接的化学成分或化学价态信息。成像和谱学的结合能够更准确地确定负载的金属原子在基底上的空间构型。进一步将原位电镜技术引入扫描透射电子显微镜内,则可以在时间尺度上探究催化剂在接近工作环境下的结构演化,从而更全面地揭示催化剂化学活性的结构起源与失效机制。本文结合近几年的部分代表性研究成果,简要介绍球差校正STEM技术在原子级分散负载催化剂研究中的应用,并对其在该研究领域的进一步发展进行了展望。  相似文献   

20.
Liquid-phase transmission electron microscopy (TEM) offers a real-time microscopic observation of the nanometer scale for understanding the underlying mechanisms of the growth, etching, and interactions of colloidal nanoparticles. Despite such unique capability and potential application in diverse fields of analytical chemistry, liquid-phase TEM studies rely on information obtained from the limited number of observed events. In this work, a novel liquid cell with a large-scale array of highly ordered nanochambers is constructed by sandwiching an anodic aluminum oxide membrane between graphene sheets. TEM analysis of colloidal gold nanoparticles dispersed in the liquid is conducted, employing the fabricated nanochamber array, to demonstrate the potential of the nanochamber array in quantitative liquid-phase TEM. The independent TEM observations in the multiple nanochambers confirm that the monomer attachment and coalescence processes universally govern the overall growth of nanoparticles, although individual nanoparticles follow different growth trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号