首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Bio‐inspired optical systems have the potential to transform the process of image collection and analysis in the future. Through simplicity and dynamics these collection systems may provide multiple functions with an excellent level of reliability. From the graded index of the fish‐eye to the hyper‐acuity of the compound eye, nature has provided function with amazing simplicity. This article reviews a select number of biological vision systems and the unique material behaviors that rise to these characteristics. We introduce the materials chemistry and morphological complexity that enables the biological system behavior.  相似文献   

3.
Progress reports are a new type of article in Advanced Materials, dealing with the hottest current topics, and providing readers with a critically selected overview of important progress in these fields. It is not intended that the articles be comprehensive, but rather insightful, selective, critical, opinionated, and even visionary. We have approached scientists we believe are at the very forefront of these fields to contribute the articles, which will appear on an annual basis. The article below describes the latest advances in bio‐inspired materials chemistry.  相似文献   

4.
Progress reports are a new type of article in Advanced Engineering Materials, dealing with the hottest current topics, and providing readers with a critically selected overview of important progress in these fields. It is not intended that the articles be comprehensive, but rather insightful, selective, critical, opinionated, and even visionary. We have approached scientists we believe are at the very forefront of these fields to contribute the articles, which will appear on an annual basis. The article below describes the latest advances in Bio‐inspired Materials Chemistry.  相似文献   

5.
6.
Bio‐microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub‐micrometer scale, offer applications ranging from lab‐on‐a‐chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio‐microfluidic materials, designs and applications are examined. Biopolymers enable bio‐microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio‐microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self‐regulating valves, microlens arrays and drug release systems, vital for integrated bio‐microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio‐related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.  相似文献   

7.
8.
9.
10.
Single‐atom catalysts (SACs), with atomically distributed active metal sites on supports, serve as a newly advanced material in catalysis, and open broad prospects for a wide variety of catalytic processes owing to their unique catalytic behaviors. To construct SACs with precise structures and high density of accessible single‐atom sites, while preventing aggregation to large nanoparticles, various strategies for their chemical synthesis have been recently developed by improving the distribution and chemical bonding of active sites on supports, which results in excellent activity and selectivity in a variety of catalytic reactions. Noble‐metal‐based SACs are discussed, and their structural properties, chemical synthesis, and catalytic applications are highlighted. The structure–activity relationships and the underlying catalytic mechanisms are addressed, including the influences of surface species and reducibility of supports on the activity and stability, impact of the unique structural and electronic properties of single‐atom centers modulated by metal/support interactions on catalytic activity and selectivity, and how the modified catalytic mechanism obtained by inhibiting the multiatoms involves catalytic pathways. Finally, the prospects and challenges for development in this field are highlighted.  相似文献   

11.
Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self‐organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon‐based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro‐ and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon‐based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical‐computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties.  相似文献   

12.
13.
This work describes the development, implementation, and assessment of enhanced variants of three different groups of bio‐inspired methodologies: genetic algorithms, particle swarm optimization, and artificial immune system. The algorithms are implemented on a computational tool for the synthesis and optimization of offshore oil production risers that connect a floating platform at the sea surface to the wellheads at the sea bottom. Optimization procedures using bio‐inspired algorithms for such real‐world engineering problems require the calculation of the objective function through a large number of time‐consuming finite element nonlinear dynamic analyses, for the evaluation of the structural behavior of each candidate configuration. Therefore, the performance of the algorithms may be measured by the smaller number of objective function evaluations associated to a given target fitness value. The results indicate that the artificial immune system approach, incorporating some enhancements presented in this work, is more effective than the genetic algorithms and particle swarm optimization methods, requiring a smaller number of evaluations to obtain better solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
The detrimental impacts of icing on transportation and power industries are well‐known. Inspired by natural systems that secrete a functional liquid in response to stimuli, this work introduces an anti‐icing coating that responds to surface icing by releasing antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick‐like underlying dermis that is infused with antifreeze liquid. The functionality of the new coating is validated through condensation frosting, simulated freezing fog, and freezing rain experiments. In the tested conditions, the introduced anti‐icing skin delays onset of frost, rime, and glaze accumulation at least ten times longer than anti‐icing superhydrophobic and lubricant impregnated surfaces. Furthermore, the coating delays onset of glaze formation ten times longer than surfaces flooded with a thin film of antifreeze. In each of the icing scenarios, the fundamental mechanisms responsible for antifreeze release and their relation to required antifreeze replenishment rates are described.  相似文献   

17.
Hierarchically porous carbon nanomaterials with well‐defined architecture can afford a promising platform for effectively addressing energy and environmental concerns. Herein, a totally green and straightforward synthesis strategy for the fabrication of hierarchically porous carbon nanotubes (HPCNTs) by a simple carbonization treatment without any assistance of soft/hard templates and activation procedures is demonstrated. A high specific surface area of 1419 m2 g?1 and hierarchical micro‐/meso‐/macroporosity can be achieved for the HPCNTs. The unique porous architecture enables the HPCNTs serving as excellent electrode/host materials for high‐performance supercapacitors and Li–sulfur batteries. The design strategy may pave a new avenue for the rational synthesis of hierarchically porous carbon nanostructures for high‐efficient energy storage applications.  相似文献   

18.
Scale‐up production of single‐walled carbon nanotubes (SWNTs) with high quality and purity is in pursuit, since the subsequent post purification treatment of residual metal or amorphous carbon is complicated and restricts further applications. Here, a compatible method to efficiently synthesize pure SWNTs on various supporters by using the precarburized Fe/Ni catalysts is reported. The preparation of catalysts is achieved by gas phase deposition together with CO gas at proper temperature, and the carburization of metal particles occurring simultaneously contributes to the size limitation of catalysts. By using micro‐quartz sand as a recyclable supporter, high‐quality SWNTs with a yield of 50 mg h?1 are prepared with 60% metal precursor utilization, 81% carbon source utilization, and only 0.12% (m/m) metal residues. Taking advantage of carburized Fe/Ni catalysts and appropriate supports makes it possible to balance the quantity, purity, and quality among SWNTs growth. Furthermore, this method provides a straightforward pathway to strongly combine SWNTs and diverse composite materials for further potential applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号