首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Block copolymers (BCP) can self‐assemble into nanoscale patterns with a wide variety of applications in the semiconductor industry. The self‐assembly of BCPs is commonly accomplished by solvent vapor or thermal annealing, but generally these methods require long time (few hours) to obtain nanostructured thin films. In this contribution, a new and ultrafast method (using microwaves) is proposed—high temperature solvent vapor annealing (HTSVA), combining solvent vapor annealing with thermal annealing, to achieve fast and controllable self‐assembly of amphiphilic BCP thin films. A promising carbohydrate‐based BCP capable of forming cylindrical patterns with some of the smallest feature sizes is used for demonstrating how to obtain a highly ordered vertical cylindrical pattern with sub‐10 nm feature sizes in few seconds by HTSVA. HTSVA provides not only a simple way to achieve BCP fast self‐assembly in practical applications but also a tool to study the self‐assembly behavior of BCPs under extreme conditions.  相似文献   

4.
Exploring the ordering mechanism and dynamics of self‐assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self‐assembling mechanism and kinetics of silicon‐containing 3‐arm star‐block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self‐assembly using topographically patterned substrates. The ordering process of the star‐block copolymer within fabricated topographic patterns with PS‐functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well‐ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self‐assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top‐down and bottom‐up approaches.  相似文献   

5.
Negative‐tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self‐assembled nanopatterning. BCP blends films consisting of end‐functionalized low molecular weight poly(styrene‐ran‐methyl methacrylate) and polystyrene‐block‐Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end‐functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self‐assembled nanodomain formation facilitates single step, site‐specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self‐assembly approaches to produce device oriented laterally ordered nanopatterns.  相似文献   

6.
7.
8.
9.
10.
One of the fundamental challenges encountered in successful incorporation of directed self‐assembly in sub‐10 nm scale practical nanolithography is the process compatibility of block copolymers with a high Flory–Huggins interaction parameter (χ). Herein, reliable, fab‐compatible, and ultrafast directed self‐assembly of high‐χ block copolymers is achieved with intense flash light. The instantaneous heating/quenching process over an extremely high temperature (over 600 °C) by flash light irradiation enables large grain growth of sub‐10 nm scale self‐assembled nanopatterns without thermal degradation or dewetting in a millisecond time scale. A rapid self‐assembly mechanism for a highly ordered morphology is identified based on the kinetics and thermodynamics of the block copolymers with strong segregation. Furthermore, this novel self‐assembly mechanism is combined with graphoepitaxy to demonstrate the feasibility of ultrafast directed self‐assembly of sub‐10 nm nanopatterns over a large area. A chemically modified graphene film is used as a flexible and conformal light‐absorbing layer. Subsequently, transparent and mechanically flexible nanolithography with a millisecond photothermal process is achieved leading the way for roll‐to‐roll processability.  相似文献   

11.
12.
13.
14.
Magnetic control has been a prosperous and powerful contactless approach in arraying materials into high‐order nanostructures. However, it is tremendously difficult to control organic polymers in this way on account of the weak magnetic response. The preparation of block copolymers (BCPs) with high magnetostatic energy is reported here, relying on an effective electrostatic coupling between paramagnetic ions and polymer side chains. As a result, the BCPs undergo a magnetically directed self‐assembly to form microphase‐segregated nanostructures with long‐range order. It is emphasized that such a precisely controlled alignment of the BCPs is performed upon a single commercial magnet with low‐intensity field (0.35 Tesla). This strategy is profoundly easy‐to‐handle in contrast to routine electromagnetic methods with high‐intensity field (5–10 Tesla). More significantly, the paramagnetic metal component in the BCP samples can be smartly removed, providing a template effect with a preservation of the directed self‐assembled nanofeatures for patterning follow‐up functionalized species through the original binding site.  相似文献   

15.
16.
A sacrificial‐post templating method is presented for directing block copolymer self‐assembly to form nanostructures consisting of monolayers and bilayers of microdomains. In this approach, the topographical post template is removed after self‐assembly and therefore is not incorporated into the final microdomain pattern. Arrays of nanoscale holes of different shapes and symmetries, including mesh structures and perforated lamellae with a bimodal pore size distribution, are produced. The ratio of the pore sizes in the bimodal distributions can be varied via the template pitch, and agrees with predictions of self consistent field theory.  相似文献   

17.
Block copolymers (BCPs) have the capacity to self‐assemble into a myriad of well‐defined aggregate structures, offering great promise for the construction of drug delivery, photolithographic templates, and complex nanoscale assemblies. A uniqueness of these materials is their propensity to become kinetically frozen in non‐equilibrium states, implying that the process of self‐assembly can be utilized to remodel the resulting structures. Here, a new semiconfined system for processing the BCP self‐assembly is constructed, in which an unusual dual‐phase separation occurs, including nonsolvent‐induced microphase separation and osmotically driven macrophase separation, ultimately yielding heterogeneous BCP membranes. These membranes with cellular dimensions show unique anisotropy that can be used for cell encoding and patterning, which are highly relevant to biology and medicine. This processing method not only provides new levels of tailorability to the structures and encapsulated contents of BCP assemblies, but can also be generalized to other block polymers, particularly those with attractive electronic and/or optical properties.  相似文献   

18.
19.
20.
The self‐assembly of cylinder‐forming block copolymer (BCP) microdomains confined within chemical stripe patterns of widths incommensurate with the natural period of the copolymers, L0, is studied. It is shown that this incommensurability causes changes in both the shapes of the microdomains and their spatial period. Specifically, a transition from n to n + 1 rows of microdomains is observed when the stripe width is about n ± 1/2 L0. When the stripe's width is comparable to L0, ellipticity of microdomains can be induced with an aspect ratio up to 2.2. Free energy models are applied to describe the energetic origin of such behavior. Although our observations qualitatively resemble results in sphere‐forming BCPs confined in topographical trenches, the quantitative difference is noteworthy and technologically important for the design of nanostructures with programmable shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号