首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The self‐assembly of human islet amyloid polypeptide (hIAPP) into β‐sheet‐rich nanofibrils is associated with the pathogeny of type 2 diabetes. Soluble hIAPP is intrinsically disordered with N‐terminal residues 8–17 as α‐helices. To understand the contribution of the N‐terminal helix to the aggregation of full‐length hIAPP, here the oligomerization dynamics of the hIAPP fragment 8–20 (hIAPP8‐20) are investigated with combined computational and experimental approaches. hIAPP8‐20 forms cross‐β nanofibrils in silico from isolated helical monomers via the helical oligomers and α‐helices to β‐sheets transition, as confirmed by transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and reversed‐phase high performance liquid chromatography. The computational results also suggest that the critical nucleus of aggregation corresponds to hexamers, consistent with a recent mass‐spectroscopy study of hIAPP8‐20 aggregation. hIAPP8‐20 oligomers smaller than hexamers are helical and unstable, while the α‐to‐β transition starts from the hexamers. Converted β‐sheet‐rich oligomers first form β‐barrel structures as intermediates before aggregating into cross‐β nanofibrils. This study uncovers a complete picture of hIAPP8‐20 peptide oligomerization, aggregation nucleation via conformational conversion, formation of β‐barrel intermediates, and assembly of cross‐β protofibrils, thereby shedding light on the aggregation of full‐length hIAPP, a hallmark of pancreatic beta‐cell degeneration.  相似文献   

2.
Peptides that self‐assemble into cross‐β‐sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self‐assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N‐terminus of a potent β‐sheet‐forming sequence derived from the 20–29 segment of islet amyloid polypeptide, known to self‐assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope‐like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod‐like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N‐terminal positive charges hinder β‐sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.  相似文献   

3.
Nanomedicine is a rapidly growing field that has the potential to deliver treatments for many illnesses. However, relatively little is known about the biological risks of nanoparticles. Some studies have shown that nanoparticles can have an impact on the aggregation properties of proteins, including fibril formation. Moreover, these studies also show that the capacity of nanoscale objects to induce or prevent misfolding of the proteins strongly depends on the primary structure of the protein. Herein, light is shed on the role of the peptide primary structure in directing nanoparticle‐induced misfolding by means of two model peptides. The design of these peptides is based on the α‐helical coiled‐coil folding motif, but also includes features that enable them to respond to pH changes, thus allowing pH‐dependent β‐sheet formation. Previous studies showed that the two peptides differ in the pH range required for β‐sheet folding. Time‐dependent circular dichroism spectroscopy and transmission electron microscopy are used to characterize peptide folding and aggregate morphology in the presence of negatively charged gold nanoparticles (AuNPs). Both peptides are found to undergo nanoparticle‐induced fibril formation. The determination of binding parameters by isothermal titration calorimetry further reveals that the different propensities of both peptides to form amyloid‐like structures in the presence of AuNPs is primarily due to the binding stoichiometry to the AuNPs. Modification of one of the peptide sequences shows that AuNP‐induced β‐sheet formation is related to the structural propensity of the primary structure and is not a generic feature of peptide sequences with a sufficiently high binding stoichiometry to the nanoparticles.  相似文献   

4.
Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self‐assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self‐assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.  相似文献   

5.
Human islet amyloid polypeptide (hIAPP) is the source of the major component of the amyloid deposits found in the islets of Langerhans of around 95 per cent type 2 diabetic patients. The formation of aggregates and mature fibrils is thought to be responsible for the dysfunction and death of the insulin-producing pancreatic β-cells. Investigation on the conformation, orientation and self-assembly of the hIAPP at time zero could be beneficial for our understanding of its stability and aggregation process. To obtain these insights, the hIAPP at time zero was studied at the air–aqueous interface using the Langmuir monolayer technique. The properties of the hIAPP Langmuir monolayer at the air–aqueous interface on a NaCl subphase with pH 2.0, 5.6 and 9.0 were examined by surface pressure- and potential-area isotherms, UV–Vis absorption, fluorescence spectroscopy and Brewster angle microscopy. The conformational and orientational changes of the hIAPP Langmuir monolayer under different surface pressures were characterized by p-polarized infrared-reflection absorption spectroscopy, and the results did not show any prominent changes of conformation or orientation. The predominant secondary structure of the hIAPP at the air–aqueous interface was α-helix conformation, with a parallel orientation to the interface during compression. These results showed that the hIAPP Langmuir monolayer at the air–aqueous interface was stable, and no aggregate or domain of the hIAPP at the air–aqueous interface was observed during the time of experiments.  相似文献   

6.
Human islet amyloid polypeptide (hIAPP, or amylin) forms amyloid deposits in the islets of Langerhans, a phenomenon that is associated with type‐2 diabetes impacting millions of people worldwide. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Here, it is shown that generation‐3 OH‐terminated poly(amidoamine) dendrimer, a polymeric nanoparticle, can effectively halt the aggregation of hIAPP and shut down hIAPP toxicity in pancreatic MIN6 and NIT‐1 cells as well as in mouse islets. This finding is supported by high‐throughput dynamic light scattering experiment and thioflavin T assay, where the rapid evolution of hIAPP nucleation and elongation processes is halted by the addition of the dendrimer up to 8 h. Discrete molecular dynamics simulations further reveal that hIAPP residues bound strongly with the dendrimer near the c‐terminal portion of the peptide, where the amyloidogenic sequence (residues 22–29) locates. Furthermore, simulations of hIAPP dimerization reveal that binding with the dendrimer significantly reduces formation of interpeptide contacts and hydrogen bonds, thereby prohibiting peptide self‐association and amyloidosis. This study points to a promising nanomedicinal strategy for combating type‐2 diabetes and may have broader implications for targeting neurological disorders whose distinct hallmark is also amyloid fibrillation.  相似文献   

7.
The unfolding, misfolding, and aggregation of proteins lead to a variety of structural species. One form is the amyloid fibril, a highly aligned, stable, nanofibrillar structure composed of β‐sheets running perpendicular to the fibril axis. β‐Lactoglobulin (β‐Lg) and κ‐casein (κ‐CN) are two milk proteins that not only individually form amyloid fibrillar aggregates, but can also coaggregate under environmental stress conditions such as elevated temperature. The aggregation between β‐Lg and κ‐CN is proposed to proceed via disulfide bond formation leading to amorphous aggregates, although the exact mechanism is not known. Herein, using a range of biophysical techniques, it is shown that β‐Lg and κ‐CN coaggregate to form morphologically distinct co‐amyloid fibrillar structures, a phenomenon previously limited to protein isoforms from different species or different peptide sequences from an individual protein. A new mechanism of aggregation is proposed whereby β‐Lg and κ‐CN not only form disulfide‐linked aggregates, but also amyloid fibrillar coaggregates. The coaggregation of two structurally unrelated proteins into cofibrils suggests that the mechanism can be a generic feature of protein aggregation as long as the prerequisites for sequence similarity are met.  相似文献   

8.
Amyloidogenic peptides can self‐assemble into highly ordered nanostructures consisting of cross β‐sheet‐rich networks that exhibit unique physicochemical properties and high stability. Light‐harvesting amyloid nanofibrils are constructed by employing insulin as a building block and thioflavin T (ThT) as a amyloid‐specific photosensitizer. The ability of the self‐assembled amyloid scaffold to accommodate and align ThT in high density on its surface allows for efficient energy transfer from the chromophores to the catalytic units in a similar way to natural photosystems. Insulin nanofibrils significantly enhance the photoactivity of ThT by inhibiting nonradiative conformational relaxation around the central C? C bonds and narrowing the distance between ThT molecules that are bound to the β‐sheet‐rich amyloid structure. It is demonstrated that the ThT‐amyloid hybrid nanostructure is suitable for biocatalytic solar‐to‐chemical conversion by integrating the light‐harvesting amyloid module (for nicotinamide cofactor regeneration) with a redox biocatalytic module (for enzymatic reduction).  相似文献   

9.
Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip‐enhanced Raman spectroscopy (TERS) as a surface‐sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.  相似文献   

10.
The self‐assembly of amyloidogenic peptides into β‐sheet‐rich aggregates is a general feature of many neurodegenerative diseases, including Alzheimer's disease, which signifies the need for the effective attenuation of amyloid aggregation toward alleviating amyloid‐associated neurotoxicity. This study reports that photoluminescent carbon nanodots (CDs) can effectively suppress Alzheimer's β‐amyloid (Aβ) self‐assembly and function as a β‐sheet breaker disintegrating preformed Aβ aggregates. This study synthesizes CDs using ammonium citrate through one‐pot hydrothermal treatment and passivates their surface with branched polyethylenimine (bPEI). The bPEI‐coated CDs (bPEI@CDs) exhibit hydrophilic and cationic surface characteristics, which interact with the negatively charged residues of Aβ peptides, suppressing the aggregation of Aβ peptides. Under light illumination, bPEI@CDs display a more pronounced effect on Aβ aggregation and on the dissociation of β‐sheet‐rich assemblies through the generation of reactive oxygen species from photoactivated bPEI@CDs. The light‐triggered attenuation effect of Aβ aggregation using a series of experiments, including photochemical and microscopic analysis, is verified. Furthermore, the cell viability test confirms the ability of photoactivated bPEI@CDs for the suppression of Aβ‐mediated cytotoxicity, indicating bPEI@CDs' potency as an effective anti‐Aβ neurotoxin agent.  相似文献   

11.
Mucin 1 (MUC1) peptide fused with Q11 (MUC1‐Q11) having 35 residues has previously been shown to form amyloid fibrils. Using time‐dependent and high‐resolution atomic force microscopy (AFM) imaging, it is revealed that the formation of individual MUC1‐Q11 fibrils entails nucleation and extension at both ends. This process can be altered by local mechanical perturbations using AFM probes. This work reports two specific perturbations and outcomes. First, by increasing load while maintaining tip‐surface contact, the fibrils are cut during the scan due to shearing. Growth of fibrils occurs at the newly exposed termini, following similar mechanism of the MUC1‐Q11 nucleation growth. As a result, branched fibrils are seen on the surface whose orientation and length can be controlled by the nuclei orientation and reaction time. In contrast to the “one‐time‐cut”, fibrils can be continuously fragmented by modulation at sufficiently high amplitude. As a result, short and highly branched fibrils accumulate and pile on surfaces. Since the fibril formation and assembly of MUC1‐Q11 can be impacted by local mechanical force, this approach offers a nonchemical and label‐free means to control the presentation of MUC1 epitopes, and has promising application in MUC1 fibril‐based immunotherapy.  相似文献   

12.
Direct photoexcitation of charges at a plasmonic metal hotspot produces energetic carriers that are capable of performing photocatalysis in the visible spectrum. However, the mechanisms of generation and transport of hot carriers are still not fully understood and under intense investigation because of their potential technological importance. Here, spectroscopic evidence proves that the reduction of dye molecules tethered to a Au(111) surface can be triggered by plasmonic carriers via a tunneling mechanism, which results in anomalous Raman intensity fluctuations. Tip‐enhanced Raman spectroscopy (TERS) helps to correlate Raman intensity fluctuations with temperature and with properties of the molecular spacer. In combination with electrochemical surface‐enhanced Raman spectroscopy, TERS results show that plasmon‐induced energetic carriers can directly tunnel to the dye through the spacer. This organic spacer chemically isolates the adsorbate from the metal but does not block photo‐induced redox reactions, which offers new possibilities for optimizing plasmon‐induced photocatalytic systems.  相似文献   

13.
Fundamental advances have been made in the spatially resolved chemical analysis of polymer thin films. Tip‐enhanced Raman spectroscopy (TERS) is used to investigate the surface composition of a mixed polyisoprene (PI) and polystyrene (PS) thin film. High‐quality TER spectra are collected from these nonresonant Raman‐active polymers. A wealth of structural information is obtained, some of which cannot be acquired with conventional analytical techniques. PI and PS are identified at the surface and subsurface, respectively. Differences in the band intensities suggest strongly that the polymer layers are not uniformly thick, and that nanopores are present under the film surface. The continuous PS subsurface layer and subsurface nanopores have hitherto not been identified. These data are obtained with nanometer spatial resolution. Confocal far‐field Raman spectroscopy and X‐ray photoelectron spectroscopy are employed to corroborate some of the results. With routine production of highly enhancing TERS tips expected in the near future, it is predicted that TERS will be of great use for the rigorous chemical analysis of polymer and other composite systems with nanometer spatial resolution.  相似文献   

14.
We successfully realized in‐situ monitoring plasmon‐driven selective reduction of 2,4‐dinitrobenzenethiol to 2,2′‐diamino‐dimercaptoazobenzene, revealed by high vacuum tip‐enhanced Raman spectroscopy (HV‐TERS). The HV‐TER spectra revealed that the 2‐nitro and the 4‐nitro of 2,4‐DNBT were selectively reduced to the 2‐amine and the –N = N– bond of 2,2′‐diamino‐dimercaptoazobenzene (2,2′DA‐DMAB). Raman‐active and IR‐active modes as well as Fermi resonance were simultaneously observed in HV‐TERS, which demonstrated the advantages of HV‐TERS over SERS, since only Raman‐active modes were observed in SERS. The intensities of molecular IR‐active modes can be manipulated by the distance between tip and substrate in the near field, due to different dependences of the plasmon gradient and plasmon intensity over the distance of nano gap. Our results in HV‐TERS are in‐situ “complete‐vibration modes” spectral analysis, which significantly extend the application of HV‐TERS in the field of ultrasensitive spectral analysis on the nano scale.  相似文献   

15.
Amyloids are pathogenic hallmarks in many neurodegenerative diseases such as amyloid‐β (Aβ) fibrils in Alzheimer's disease (AD). Here, the effect of gold nanoparticles (AuNPs) on amyloids is examined using Aβ as a model system. It is found that bare AuNPs inhibited Aβ fibrillization to form fragmented fibrils and spherical oligomers. Adding bare AuNPs to preformed Aβ fibrils results in ragged species where AuNPs bind preferentially to fibrils. Similar results are demonstrated with carboxyl‐ but not amine‐conjugated AuNPs. Co‐incubation of negatively charged AuNPs with Aβ relieved Aβ toxicity to neuroblastoma. Overall, it is demonstrated that AuNPs possessing negative surface potential serve as nano‐chaperones to inhibit and redirect Aβ fibrillization, which could contribute to applications for AD.  相似文献   

16.
Understanding the property‐function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide an incomplete picture. Therefore, novel analytical techniques are required, which can address both chemical functionality and provide structural information at the same time with high spatial resolution. This is possible by using tip‐enhanced Raman spectroscopy (TERS), but due to its limited depth information, TERS is usually restricted to investigations of the nanoparticle surface. Here, TERS experiments are established on polystyrene nanoparticles (PS NPs) after resin embedding and microtome slicing. With that, unique access to their internal morphological features is gained, and thus, enables differentiation between information obtained for core‐ and shell‐regions. Complementary information is obtained by means of transmission electron microscopy (TEM) and from force–distance curve based atomic force microscopy (FD‐AFM). This multimodal approach achieves a high degree of discrimination between the resin and the polymers used for nanoparticle formulation. The high potential of TERS combined with advanced AFM spectroscopy tools to probe the mechanical properties is applied for quality control of the resin embedding procedure.  相似文献   

17.
We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the β-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.  相似文献   

18.
We have investigated the surface structure of islet amyloid polypeptide (IAPP) fibrils and α-synuclein protofibrils in liquid by means of frequency modulation atomic force microscopy (FM-AFM). ?ngstr?m-resolution FM-AFM imaging of isolated macromolecules in liquid is demonstrated for the first time. Individual β-strands aligned perpendicular to the fibril axis with a spacing of 0.5?nm are resolved in FM-AFM images, which confirms cross-β structure of IAPP fibrils in real space. FM-AFM images also reveal the existence of 4?nm periodic domains along the axis of IAPP fibrils. Stripe features with 0.5?nm spacing are also found in images of α-synuclein protofibrils. However, in contrast to the case for IAPP fibrils, the stripes are oriented 30° from the axis, suggesting the possibility of β-strand alignment in protofibrils different from that in mature fibrils or the regular arrangement of thioflavin T molecules present during the fibril preparation aligned at the surface of the protofibrils.  相似文献   

19.
The combination of complementary techniques to characterize materials at the nanoscale is crucial to gain a more complete picture of their structure, a key step to design and fabricate new materials with improved properties and diverse functions. Here it is shown that correlative atomic force microscopy (AFM) and localization‐based super‐resolution microscopy is a useful tool that provides insight into the structure and emissive properties of fluorescent β‐lactoglobulin (βLG) amyloid‐like fibrils. These hybrid materials are made by functionalization of βLG with organic fluorophores and quantum dots, the latter being relevant for the production of 1D inorganic nanostructures templated by self‐assembling peptides. Simultaneous functionalization of βLG fibers by QD655 and QD525 allows for correlative AFM and two‐color super‐resolution fluorescence imaging of these hybrid materials. These experiments allow the combination of information about the topography and number of filaments that compose a fibril, as well as the emissive properties and nanoscale spatial distribution of the attached fluorophores. This study represents an important step forward in the characterization of multifunctionalized hybrid materials, a key challenge in nanoscience.  相似文献   

20.
Understanding and manipulating amyloid‐β (Aβ) aggregation provide key knowledge and means for the diagnosis and cure of Alzheimer's disease (AD) and the applications of Aβ‐based aggregation systems. Here, we studied the formation of various Aβ aggregate structures with gold nanoparticles (AuNPs) and brain total lipid extract‐based supported lipid bilayer (brain SLB). The roles of AuNPs and brain SLB in forming Aβ aggregates were studied in real time, and the structural details of Aβ aggregates were monitored and analyzed with the dark‐field imaging of plasmonic AuNPs that allows for long‐term in situ imaging of Aβ aggregates with great structural details without further labeling. It was shown that the fluid brain SLB platform provides the binding sites for Aβ and drives the fast and efficient formation of Aβ aggregate structures and, importantly, large Aβ plaque structures (>15 μm in diameter), a hallmark for AD, were formed without going through fibril structures when Aβ peptides were co‐incubated with AuNPs on the brain SLB. The dark‐field scattering and circular dichroism‐correlation data suggest that AuNPs were heavily involved with Aβ aggregation on the brain SLB and less α‐helix, less β‐sheet and more random coil structures were found in large plaque‐like Aβ aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号