首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles (AuNPs) are generally considered nontoxic, similar to bulk gold, which is inert and biocompatible. AuNPs of diameter 1.4 nm capped with triphenylphosphine monosulfonate (TPPMS), Au1.4MS, are much more cytotoxic than 15‐nm nanoparticles (Au15MS) of similar chemical composition. Here, major cell‐death pathways are studied and it is determined that the cytotoxicity is caused by oxidative stress. Indicators of oxidative stress, reactive oxygen species (ROS), mitochondrial potential and integrity, and mitochondrial substrate reduction are all compromised. Genome‐wide expression profiling using DNA gene arrays indicates robust upregulation of stress‐related genes after 6 and 12 h of incubation with a 2 × IC50 concentration of Au1.4MS but not with Au15MS nanoparticles. The caspase inhibitor Z‐VAD‐fmk does not rescue the cells, which suggests that necrosis, not apoptosis, is the predominant pathway at this concentration. Pretreatment of the nanoparticles with reducing agents/antioxidants N‐acetylcysteine, glutathione, and TPPMS reduces the toxicity of Au1.4MS. AuNPs of similar size but capped with glutathione (Au1.1GSH) likewise do not induce oxidative stress. Besides the size dependency of AuNP toxicity, ligand chemistry is a critical parameter determining the degree of cytotoxicity. AuNP exposure most likely causes oxidative stress that is amplified by mitochondrial damage. Au1.4MS nanoparticle cytotoxicity is associated with oxidative stress, endogenous ROS production, and depletion of the intracellular antioxidant pool.  相似文献   

2.
Singlet oxygen (1O2) generation has been observed from ultrasmall luminescent gold nanoparticles (AuNPs), but regulation of 1O2 generation ability from the nanosized noble metals has remained challenging. Herein, the 1O2 generation ability of ultrasmall AuNPs (d ≈ 1.8 nm) is reported to be highly correlated to the surface factors including the amount of Au(I) species and surface charge. By taking the advantages of facile in situ PEGylation, it is discovered that a high amount of Au(I) species and surface charge results in strong ability in generation of 1O2, whereas a relative low amount of Au(I) species and surface charge leads to weak ability in 1O2 production. A feasible general strategy is then developed to controllably regulate the 1O2 generation efficiency of the AuNPs through facile ligand exchange with positively‐charged or negatively‐charged thiolated ligands. The AuNPs as nanophotosensitizer for 1O2 generation in the cellular level is also demonstrated to be highly controllable through surface ligand exchange with synergistical effects of 1O2 generation ability and subcellular distribution to lysosome or mitochondria. The strategy in the bidirectional regulation of 1O2 generation from ultrasmall AuNPs provides guidance for future design of nanosized metal nanomedicine toward specific disease diagnosis and treatment.  相似文献   

3.
In the present study, bio-inspired Ag–Au nanocomposite was synthesized using banana peel extract (BPE) powder. The Ag–Au nanocomposite was characterized using various techniques such as UV–vis spectrophotometry, transmission electron microscopy (TEM) attached with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Efficiency of AuNPs, AgNPs and Ag–Au nanocomposite was tested for their antibacterial activity against Pseudomonas aeruginosa NCIM 2948. The Ag–Au nanocomposite exhibits enhanced antimicrobial activity over its monometallic counterparts. Anti-biofilm activity of AgNPs, AuNPs and Ag–Au nanocomposite against P. aeruginosa was evaluated on glass surfaces. The Ag–Au nanocomposite exhibited the highest biofilm reduction (70–80%) when compared with individual AgNPs and AuNPs. Effect of AuNPs, AgNPs and Ag–Au nanocomposite on biofilm formation was evaluated in 96 wells microtiter plates. The percentage of biofilm inhibition was sharply increased with increasing concentration of AuNPs, AgNPs and Ag–Au composite. However, Au–Ag nanocomposite showed the highest biofilm inhibition when compared with individual AuNPs and AgNPs. This synergistic anti-biofilm activity of Ag–Au nanocomposite has an importance in the development of novel therapeutics against multidrug-resistant bacterial biofilm.  相似文献   

4.
Multidrug resistance of bacteria is a major challenge due to the wide‐spread use of antibiotics. While a range of strategies have been developed in recent years, suppression of bacterial activity and virulence via their network of extracellular amyloid has rarely been explored, especially with nanomaterials. Here, silver nanoparticles and nanoclusters (AgNPs and AgNCs) capped with cationic branched polyethylenimine polymer are synthesized, and their antimicrobial potentials are determined at concentrations safe to mammalian cells. Compared with the ultrasmall AgNCs, AgNPs entail stronger binding to suppress the fibrillization of FapC, a major protein constituent of the extracellular amyloid matrix of Pseudomonas aeruginosa. Both types of nanoparticles exhibit concentration‐dependent antibiofilm and antimicrobial properties against P. aeruginosa. At concentrations of 1 × 10?6 m or below, both the bactericidal activity of AgNCs and the antibiofilm capacity of AgNPs are associated with their structure‐mediated bio–nano interactions but not ion release. For AgNPs, specifically, their antibiofilm potency correlates with their capacity of FapC fibrillization inhibition, but not with their bactericidal activity. This study demonstrates the antimicrobial potential of safe nanotechnology through the novel route of amyloidosis inhibition.  相似文献   

5.
Gold nanoparticles (AuNPs) with core sizes below 2 nm and compact ligand shells constitute versatile platforms for the development of novel reagents in nanomedicine. Due to their ultrasmall size, these AuNPs are especially attractive in applications requiring delivery to crowded intracellular spaces in the cytosol and nucleus. For eventual use in vivo, ultrasmall AuNPs should ideally be monodisperse, since small variations in size may affect how they interact with cells and how they behave in the body. Here we report the synthesis of ultrasmall, uniform 144-atom AuNPs protected by p-mercaptobenzoic acid followed by ligand exchange with glutathione (GSH). Quantitative scanning transmission electron microscopy (STEM) reveals that the resulting GSH-coated nanoparticles (Au(GSH)) have a uniform mass distribution with cores that contain 134 gold atoms on average. Particle size dispersity is analyzed by analytical ultracentrifugation, giving a narrow distribution of apparent hydrodynamic diameter of 4.0 ± 0.6 nm. To evaluate the nanoparticles' intracellular fate, the cell-penetrating peptide TAT is attached noncovalently to Au(GSH), which is confirmed by fluorescence quenching and isothermal titration calorimetry. HeLa cells are then incubated with both Au(GSH) and the Au(GSH)-TAT complex, and imaged without silver enhancement of the AuNPs in unstained thin sections by STEM. This imaging approach enables unbiased detection and quantification of individual ultrasmall nanoparticles and aggregates in the cytoplasm and nucleus of the cells.  相似文献   

6.
It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram-positive and Gram-negative bacteria. Hydrophilic and hydrophobic quasi-spherical and star-shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non-translocating AuNPs. Direct observation of nanoparticle-induced membrane tension and squeezing is demonstrated using a custom-designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi-spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial-membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane-tension-induced (mechanical) killing of bacterial cells by non-translocating NPs.  相似文献   

7.
The poor penetrability of many biofilms contributes to the recalcitrance of infectious biofilms to antimicrobial treatment. Here, a new application for the use of magnetic nanoparticles in nanomedicine to create artificial channels in infectious biofilms to enhance antimicrobial penetration and bacterial killing is proposed. Staphylococcus aureus biofilms are exposed to magnetic‐iron‐oxide nanoparticles (MIONPs), while magnetically forcing MIONP movement through the biofilm. Confocal laser scanning microscopy demonstrates artificial channel digging perpendicular to the substratum surface. Artificial channel digging significantly (4–6‐fold) enhances biofilm penetration and bacterial killing efficacy by gentamicin in two S. aureus strains with and without the ability to produce extracellular polymeric substances. Herewith, this work provides a simple, new, and easy way to enhance the eradication of infectious biofilms using MIONPs combined with clinically applied antibiotic therapies.  相似文献   

8.
Ultrasmall nanoparticles (NPs) are a promising platform for the diagnosis and therapy of cancer, but the particles in sizes as small as several nanometers have an ability to translocate across biological barriers, which may bring unpredictable health risks. Therefore, it is essential to develop workable cell-based tools that can deliver ultrasmall NPs to the tumor in a safer manner. Here, this work uses macrophages as a shuttle to deliver sub-5 nm PEGylated gold (Au) NPs to tumors actively or passively, while reducing the accumulation of Au NPs in the brain. This work demonstrates that sub-5 nm Au NPs can be rapidly exocytosed from live macrophages, reaching 45.6% within 24 h, resulting in a labile Au NP-macrophage system that may release free Au NPs into the blood circulation in vivo. To overcome this shortcoming, two straightforward methods are used to engineer macrophages to obtain “half-dead” and “dead” macrophages. Although the efficiency of engineered macrophages for delivering sub-5 nm Au NPs to tumors is 2.2–3.8% lower than that of free Au NPs via the passive enhanced permeability and retention effect, this safe-by-design approach can dramatically reduce the accumulation of Au NPs in the brain by more than one order of magnitude. These promising approaches offer an opportunity to expand the immune cell- or stem cell-mediated delivery of ultrasmall NPs for the diagnosis and therapy of diseases in a safer way in the future.  相似文献   

9.
The immunological response of macrophages to physically produced pure Au and Ag nanoparticles (NPs) (in three different sizes) is investigated in vitro. The treatment of either type of NP at ≥10 ppm dramatically decreases the population and increases the size of the macrophages. Both NPs enter the cells but only AuNPs (especially those with smaller diamter) up‐regulate the expressions of proinflammatory genes interlukin‐1 (IL‐1), interlukin‐6 (IL‐6), and tumor necrosis factor (TNF‐α). Transmission electron microscopy images show that AuNPs and AgNPs are both trapped in vesicles in the cytoplasma, but only AuNPs are organized into a circular pattern. It is speculated that part of the negatively charged AuNPs might adsorb serum protein and enter cells via the more complicated endocytotic pathway, which results in higher cytotoxicity and immunological response of AuNPs as compared to AgNPS.  相似文献   

10.
Pseudomonas aeruginosa is a notorious pathogen that causes biofilm aided infections in patients with cystic fibrosis and burn wounds, resulting in significant mortality in immunocompromised individuals. This study reports a novel one‐step biosynthesis of gold nanoparticles using phytocompound, hordenine (HD), as a reducing and capping agent. The synthesis of the anisotropic hordenine‐fabricated gold nanoparticles (HD‐AuNPs) with an average particle size of 136.87 nm was achieved within 12 h of incubation at room temperature. Both HD and HD‐AuNPs exhibited significant antibiofilm activity against P. aeruginosa PAO1, although greater biofilm inhibition was observed for the nanoparticles as compared to hordenine alone. In the microtitre plate assay and tube method, the nanoparticles significantly inhibited the biofilm formation by 73.69 and 78.41%, respectively. The exopolysaccharide production by the test pathogen was arrested by 68.46% on treatment with the nanoparticles. Further, the effect of HD and HD‐AuNPs on the biofilm architecture of P. aeruginosa was revealed by light and confocal laser‐scanning microscopy micrographs. The overall results of this study suggested the synergistic antibiofilm effect of AuNPs and HD for the treatment of chronic bacterial infections caused by biofilms forming pathogens.Inspec keywords: molecular biophysics, biochemistry, gold, nanoparticles, nanofabrication, microorganisms, organic compounds, particle size, nanobiotechnologyOther keywords: green synthesis, anisotropic gold nanoparticles, hordenine, antibiofilm efficacy, Pseudomonas aeruginosa, pathogen, cystic fibrosis, burn wounds, one‐step biosynthesis, phytocompound, reducing agent, capping agent, particle size, microtitre plate assay, tube method, confocal laser‐scanning microscopy micrographs, Au  相似文献   

11.
Ultrasmall and uniform copper nanoparticles were synthesized through a trace-level ethylenediaminetetraacetic acid (EDTA)-assisted wet chemical route in which Cu(OH)2 colloid, KBH4 and polyvinyl pyrrolidone (PVP) were used as the Cu source, the reducing agent, and the protective agents, respectively. The copper nanoparticles exhibit a spherical morphology with a narrow size distribution, a uniform shape, and the average diameter of ca. 4 nm. The presence of trace EDTA is indispensable for the preparation of ultrasmall and uniform copper nanoparticles. EDTA concentration directly influences the copper nanoparticle size and uniformity. As EDTA concentration decreases, the size of the copper nanoparticles decreases, whereas the uniformity increases. The possible formation mechanism of ultrasmall and uniform copper nanoparticles was determined according to experimental results.  相似文献   

12.
A green and cost-effective biosynthetic approach for the preparation of icosahedral gold nanoparticles (AuNPs) using an aqueous leaf extract of Polygonum minus as reducing and stabilising factor is described. The reduction of Au3+ ions to elemental Au rapidly occurred and is completed within 20 minutes at room temperature. The size of the nanoparticles is highly sensitive to the AuCl4?/leaf extract concentration ratio and pH. Transmission electron microscopy and X-ray diffraction data indicated that the nanoparticles were in a crystalline shape (face-centred cubic), mostly icosahedral and nearly monodispersed with an average size of 23 nm. Cyclic voltammetric studies suggested that flavonoids, such as quercetin and myricetin present in the leaf extract had a tendency to donate electrons to Au3+ ions and the formation of elemental Au was possible due to the transfer of electrons from these flavonoids to Au3+ ions. Infrared absorption of the AuNPs and the leaf extract revealed that the oxidised (quinone) form of quercetin and myricetin were presumably the main stabilising agents in the formation of stable nanoparticles. The present biosynthesis of AuNPs was simple, rapid, cost-effective and environmentally friendly. The newly prepared biostabilised icosahedral AuNPs show good catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).  相似文献   

13.
This study was performed to determine the antimicrobial and antibiofilm activities of silver nanoparticles (AgNPs) biosynthesised using Streptomyces griseorubens AU2 isolated from soil. The antimicrobial activity of the AgNPs was determined by agar well diffusion, disc diffusion and broth microdilution methods. Diameters of the zone of inhibition results clearly displayed that the microbially biosynthesised AgNPs have potent antimicrobial activity against Candida albicans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of the nanoparticles that had been determined by broth microdilution method were found to be 20 and 50 µg/ml for C. albicans, B. subtilis and S. aureus; 10 and 20 µg/ml for E. coli and P. aeruginosa, respectively. For determining the effect of AgNPs on biofilm formation under in vitro conditions, MIC and subMICs were studied on P. aeruginosa and S. aureus biofilms by using microplate biofilm assay. Treatment of the AgNPs resulted in a decrease in the biofilm formation of S. aureus and P. aeruginosa as 26.52 and 25.50%, respectively. As a result of this study, it can be suggested that actinobacterially synthesised AgNPs have an effective potential to be used for pharmaceutical applications against multi‐resistant microorganisms.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, microorganismsOther keywords: antimicrobial potentials, antibiofilm potentials, silver nanoparticles, antimicrobial activity, antibiofilm activity, Streptomyces griseorubens AU2, disc diffusion, microdilution method, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, nanoparticle minimum inhibitory concentration, nanoparticle minimum lethal concentration, biofilm formation, in vitro conditions, microplate biofilm assay, pharmaceutical applications, multiresistant microorganisms, Ag  相似文献   

14.
This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5, 4, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate‐capped AuNPs exhibit loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 μg mL?1. The cells exposed to 1.5 nm AuNPs at this concentration do not form embryoid bodies but rather disintegrate into single cells within 48 h. Cell death caused by 1.5 nm AuNPs also occur in hESC‐derived neural progenitor cells. None of the other nanoparticles exhibit toxic effects on the hESCs at concentrations as high as 10 μg mL?1 during a 19 d neural differentiation period. Thiolate‐capped 4 nm AuNPs at 10 μg mL?1 cause a dramatic decrease in global DNA methylation (5 mC) and a corresponding increase in global DNA hydroxymethylation (5 hmC) of the hESC's DNA in only 24 h. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells.  相似文献   

15.
Bacterial infections, especially multidrug‐resistant bacterial infections, are an increasingly serious problem in the field of wound healing. Herein, bacterial cellulose (BC) decorated by 4,6‐diamino‐2‐pyrimidinethiol (DAPT)‐modified gold nanoparticles (Au‐DAPT NPs) is presented as a dressing (BC‐Au‐DAPT nanocomposites) for treating bacterially infected wounds. BC‐Au‐DAPT nanocomposites have better efficacy (measured in terms of reduced minimum inhibition concentration) than most of the antibiotics (cefazolin/sulfamethoxazole) against Gram‐negative bacteria, while maintaining excellent physicochemical properties including water uptake capability, mechanical strain, and biocompatibility. On Escherichia coli‐ or Pseudomonas aeruginosa‐infected full‐thickness skin wounds on rats, the BC‐Au‐DAPT nanocomposites inhibit bacterial growth and promote wound repair. Thus, the BC‐Au‐DAPT nanocomposite system is a promising platform for treating superbug‐infected wounds.  相似文献   

16.
Supported metal nanoparticles (MNPs) undergo severe aggregation, especially when the interaction between MNPs and their supports are limited and weak where their performance deteriorates dramatically. This becomes more severe when catalysts are operated under high temperature. Here, it is reported that MNPs including Pt, Au, Rh, and Ru, with sub‐2 nm size can be stabilized on densely packed defective CeO2 nanoparticles with sub‐5 nm size via strong coupling by direct laser conversion of corresponding metal ions encapsulated cerous metal–organic frameworks (Ce‐MOFs). Ce‐MOF serves as an ideal dispersion precursor to uniformly encapsulate noble metal ions in their orderly arranged pores. Ultrafast laser vaporization and cooling forms uniform, ultrasmall, well‐mixed, and exceptionally dense nanoparticles of metal and metal oxide concurrently. The laser‐induced ultrafast reaction (within tens of nanoseconds) facilitates the precipitation of CeO2 nanoparticles with abundant surficial defects. Due to the well‐mixed ultrasmall Pt and CeO2 components with strong coupling, this catalyst exhibits exceptionally high stability and activity both at low and high temperatures (170–1100 °C) for CO oxidation in long‐term operation, significantly exceeding catalysts prepared by traditional methods. The scalable feature of laser and huge MOF family make it a versatile method for the production of MNP‐based nanocomposites in wide applications.  相似文献   

17.
Chemical regulation of enzyme‐mimic activity of nanomaterials is challenging because it requires a precise understanding of the surface chemistry and mechanism, and rationally designed applications. Herein, Ag+‐gated peroxidase activity is demonstrated by successfully modulating surface chemistry of cetyltrimethylammonium bromide‐capped gold nanoparticles (CTAB‐AuNPs). A surface blocking effect of long‐chain molecules on surfaces of AuNPs that inhibit peroxidase activity of AuNPs is found. Ag+ ions can selectively bind on the surfaces of AuNPs and competitively destroy CTAB membrane forming Ag+@CTAB‐AuNPs complexes to result in enhanced peroxidase activity. Ag+@CTAB‐AuNPs show the highest peroxidase activity compared to similar‐sized citrate‐capped and ascorbic acid‐capped AuNPs. Ag+@CTAB‐AuNPs can potentially develop into analyte‐responsive systems and exhibit advantages in the optical sensing field. For example, the Ag+@CTAB‐AuNPs system shows an enhanced sensitivity and selectivity for acetylcholinesterase activity sensing compared to other methods.  相似文献   

18.
Amyloids are pathogenic hallmarks in many neurodegenerative diseases such as amyloid‐β (Aβ) fibrils in Alzheimer's disease (AD). Here, the effect of gold nanoparticles (AuNPs) on amyloids is examined using Aβ as a model system. It is found that bare AuNPs inhibited Aβ fibrillization to form fragmented fibrils and spherical oligomers. Adding bare AuNPs to preformed Aβ fibrils results in ragged species where AuNPs bind preferentially to fibrils. Similar results are demonstrated with carboxyl‐ but not amine‐conjugated AuNPs. Co‐incubation of negatively charged AuNPs with Aβ relieved Aβ toxicity to neuroblastoma. Overall, it is demonstrated that AuNPs possessing negative surface potential serve as nano‐chaperones to inhibit and redirect Aβ fibrillization, which could contribute to applications for AD.  相似文献   

19.
The peel of Citrus maxima (C. maxima) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco‐friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV–visible spectrum, X‐ray diffraction (XRD), transmission electron microscope (TEM) and Fourier‐transform infrared spectroscopy (FTIR). The UV–visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2θ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face‐centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8–25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4‐nitrophenol to 4‐aminophenol and good antibacterial activity against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.Inspec keywords: gold, nanoparticles, nanofabrication, X‐ray diffraction, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, crystal structure, catalysis, antibacterial activity, nanobiotechnologyOther keywords: gold nanoparticles, Citrus maxima peel extract, UV–visible spectrum, X‐ray diffraction, transmission electron microscope, Fourier‐transform infrared spectroscopy, XRD analysis, faced centre cubic lattice, TEM images, catalytic activity, 4‐nitrophenol, 4‐aminophenol, antibacterial activity, gram negative bacterium, gram positive bacterium, Au  相似文献   

20.
A high‐sensitivity and low‐power theranostic nanosystem that combines with synergistic photothermal therapy and surface‐enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self‐assembly on the reduced graphene oxide (rGO) nanosheets with nanogap‐aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti‐epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS‐Au‐R6G enhances 5 × 106 magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10?8m R6G solution) due to the “hot spots” effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, in contrast to normal cells (MRC‐5). High photothermal therapy efficiency with a low power density (0.5 W cm?2) of near‐infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号