首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Morpho butterflies are famous for their wings' brilliant structural colors arising from periodic nanostructures, which show great potential value for fundamental research and practical applications. Here, a novel cellular mechanical visualizable biosensor formed by assembling engineered cardiac tissues on the Morpho butterfly wings is presented. The assembled cardiomyocytes benefit from the periodic parallel nanoridges of the wings and can recover their autonomic beating ability with guided cellular orientation and good contraction performance. As the beating processes are accompanied by the cardiomyocytes' elongation and contraction, the elastic butterfly wing substrate undergoes the same cycle of deformations, which causes corresponding synchronous shifts in their structural colors and photonic bandgaps for self‐reporting of the cell mechanics. It is demonstrated that this self‐reporting performance can be further improved by adding oriented carbon nanotubes in the nanoridges of the wings for the culture. In addition, taking advantage of the similar size of the cardiomyocyte and a single Morpho wing scale, the investigation of single‐cell‐level mechanics can be realized by detecting the optical performance of a single scale. These remarkable properties make these butterfly wings ideal platforms for biomedical research.  相似文献   

2.
Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO2 butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO2 butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO2 templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic crystal structures, which may form applications as biosensors.  相似文献   

3.
Many natural surfaces such as butterfly wings, beetles' backs, and rice leaves exhibit anisotropic liquid adhesion; this is of fundamental interest and is important to applications including self‐cleaning surfaces, microfluidics, and phase change energy conversion. Researchers have sought to mimic the anisotropic adhesion of butterfly wings using rigid surface textures, though natural butterfly scales are sufficiently compliant to be deflected by capillary forces exerted by drops. Here, inspired by the flexible scales of the Morpho aega butterfly wing, synthetic surfaces coated with flexible carbon nanotube (CNT) microscales with anisotropic drop adhesion properties are fabricated. The curved CNT scales are fabricated by a strain‐engineered chemical vapor deposition technique, giving ≈5000 scales of ≈10 µm thickness in a 1 cm2 area. Using various designed CNT scale arrays, it is demonstrated that the anisotropy of drop roll‐off angle is influenced by the geometry, compliance, and hydrophobicity of the scales; and a maximum roll‐off anisotropy of 6.2° is achieved. These findings are supported by a model that relates the adhesion anisotropy to the scale geometry, compliance, and wettability. The electrical conductivity and mechanical robustness of the CNTs, and the ability to fabricate complex multidirectional patterns, suggest further opportunities to create engineered synthetic scale surfaces.  相似文献   

4.
关玉  杨诚智  苏慧兰  张荻 《复合材料学报》2018,35(11):3146-3153
通过调控蝶翅的分步浸渍,在蝶翅模板上原位还原生成不同形状的纳米Ag-Au颗粒,并嵌入蝶翅精细分级结构得到纳米Ag-Au/蝶翅复合材料。在Ag-Au/蝶翅复合材料形成过程中,蝶翅既提供了构筑精细分级结构纳米复合材料的基体模板,又通过活性基团(如:—CONH—、—OH)参与控制Ag-Au颗粒的还原。因此,通过调控浸渍过程的温度和浸渍方式等工艺参数,得到30~50 nm的实心球状、50~80 nm空心球、不规则螺母形等不同形状的纳米Ag-Au粒子,这些纳米粒子原位沉积并均匀镶嵌在蝶翅基体上,不仅实现了对蝶翅的精细分级结构的复制,而且调控了所生成纳米Ag-Au粒子的形状。这种基于自然生物模板进行液相浸渍的制备方法为有效制备具有精细分级结构和多组分功能纳米结构的复合材料提供了重要借鉴方法。  相似文献   

5.
Huang J  Wang X  Wang ZL 《Nano letters》2006,6(10):2325-2331
The fine structure of the wing scale of a Morpho Peleides butterfly was examined carefully, and the entire configuration was completely replicated by a uniform Al(2)O(3) coating through a low-temperature ALD process. An inverted structure was achieved by removing the butterfly wing template at high temperature, forming a polycrystalline Al(2)O(3) shell structure with precisely controlled thickness. Other than the copy of the morphology of the structure, the optical property, such as the existence of PBG, was also inherited by the alumina replica. Reflection peaks at the violet/blue range were detected on both original wings and their replica, while a simple alumina coating shifted the reflection peak to longer wavelength because of the change of periodicity and refraction index. The alumina replicas also exhibited similar functional structures as waveguide and beam splitter, which may be used as the building blocks for photonic ICs with high reproducibility and lower fabrication cost compared to traditional lithography techniques.  相似文献   

6.
Tada H  Mann SE  Miaoulis IN  Wong PY 《Applied optics》1998,37(9):1579-1584
Multilayer thin-film structures in butterfly wing scales produce a colorful iridescence from reflected sunlight. Because of optical phenomena, changes in the angle of incidence of light and the viewing angle of an observer result in shifts in the color of butterfly wings. Colors ranging from green to purple, which are due to nonplanar specular reflection, can be observed on Papilio blumei iridescent scales. This refers to a phenomenon in which the curved surface patterns in the thin-film structure cause the specular component of the reflected light to be directed at various angles while affecting the spectral reflectivity at the same time by changing the optical path length through the structure. We determined the spectral reflectivities of P. blumei iridescent scales numerically by using models of a butterfly scale microstructure and experimentally by using a microscale-reflectance spectrometer. The numerical models accurately predict the shifts in spectral reflectivity observed experimentally.  相似文献   

7.
Iridescent butterfly wing colours result from the interaction of light with sub-micrometre structures in the scales. Typically, one scale contains one such photonic structure that produces a single iridescent signal. Here, however, we show how the dorsal wings of male Lamprolenis nitida emit two independent signals from two separate photonic structures in the same scale. Multiple independent signals from separate photonic structures within the same sub-micrometre device are currently unknown in animals. However, they would serve to increase the complexity and specificity of the optical signature, enhancing the information conveyed. This could be important during intrasexual encounters, in which iridescent male wing colours are employed as threat displays. Blazed diffraction gratings, like those found in L. nitida, are asymmetric photonic structures and drive most of the incident light into one diffraction order. Similar gratings are used in spectrometers, limiting the spectral range over which the spectrometer functions. By incorporating two interchangeable gratings onto a single structure, as they are in L. nitida, the functional range of spectrometers could be extended.  相似文献   

8.
Multilayer thin‐film structures in the wings of a butterfly; Papilio crino produce a colourful iridescence from reflected light. In this investigation, scanning electron microscope images show both the concave cover scales and pigmented air‐chamber ground scales. The microstructures with the concavities retroreflect incident light, thus causing the double reflection. This gives rise to both the colour mixing and polarisation conversion clearly depicted in the optical images. The result of the numerical and theoretical analysis via the CIELAB, and optical reflection and transmission of light through the multilayer stacks with the use of transfer method show that the emerging colouration on the Papilio crino is structural and is due to the combination of colours caused by multiple bounces within the concavities. The butterfly wing structure can be used as the template for designing the photonic device.Inspec keywords: bio‐optics, scanning electron microscopy, photodiodes, optical sensors, optical images, light reflection, reflectivity, colour, optical links, multilayers, optical multilayers, light polarisationOther keywords: pigmented air‐chamber ground scales, concavities, incident light, double reflection, colour mixing, polarisation conversion, optical images, numerical analysis, theoretical analysis, optical reflection, multilayer stacks, emerging colouration, butterfly wing structure, papilio crino fabricius, thin‐film structures, colourful iridescence, reflected light, electron microscope images, concave cover scales  相似文献   

9.
Kishimoto S  Wang Q  Xie H  Zhao Y 《Applied optics》2007,46(28):7026-7034
Scanning electron microscopic (SEM) moiré method was used to study the surface structure of three kinds of butterfly wings: Papilio maackii Menetries, Euploea midamus (Linnaeus), and Stichophthalma howqua (Westwood). Gratings composed of curves with different orientations were found on scales. The planar characteristics of gratings and some other planar features of the surface structure of these wings were revealed, respectively, in terms of virtual strain. Experimental results demonstrate that SEM moiré method is a simple, nonlocal, economical, effective technique for determining which grating exists on one whole scale, measuring the dimension and the whole planar structural character of the grating on each scale, as well as characterizing the relationship between gratings on different scales of each butterfly wing. Thus, the SEM moiré method is a useful tool to assist with characterizing the structure of butterfly wings and explaining their excellent properties.  相似文献   

10.
Grazing-incidence iridescence from a butterfly wing   总被引:1,自引:0,他引:1  
The Troides magellanus butterfly exhibits a specialized iridescence that is visible only when its hind wings are both illuminated and viewed at near-grazing incidence. The effect is due to the presence of a constrained bigrating structure in its wing scales that has been previously observed in only one other species of butterfly (Ancyluris meliboeus). However, whereas the Ancyluris presents wide-angle flickering iridescence, the Troides butterfly uses pigmentary coloration at all but a narrow tailored range of angles, producing a characteristic effect.  相似文献   

11.
Through billions of years of evolution, nature has created biological materials with remarkable properties. Studying these biological materials can guide the design and fabrication of bio-inspired materials. Many of the complex natural architectures, such as shells, bones, and honeycombs, have been studied to imitate the design and fabrication of materials with improved hardness and stiffness. Recently, an increasing number of researchers have investigated the wings of lepidopterans (butterflies and moths) because these structures may exhibit dazzling colors. Based on previous studies, these iridescent colors are attributable to periodic structures on the scales that constitute the wing surfaces. These complex and diverse structures have recently become a focus of multidisciplinary research due to their promising applications in the display of structural colors, advanced sensors, and solar cells. This review provides a broad overview of the research into these wings, particularly the microstructures in the wing scales. This review investigates the following three fields: structural characterization and optical property analysis of lepidopteran wings, modeling and simulation of the optical properties and microstructure, and the fabrication of artificial structures inspired by these wings.  相似文献   

12.
Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano‐structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro‐manufacturing of bio‐inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone‐inspired structural materials, petals and gecko foot‐inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly‐inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio‐inspired hybrid materials are provided.  相似文献   

13.
Many butterfly species possess 'structural' colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary 'cost' of losing a structure is less than that of gaining it, implies that 'latent' structures can be reused.  相似文献   

14.
Brink DJ  Lee ME 《Applied optics》1999,38(25):5282-5289
When illuminated and viewed along certain well-defined directions, segments on the wings of the butterfly Cynandra opis shows a striking violet-blue to blue-green. We quantify the spectral and the directional properties of these areas of the wings of the insect. Electron microscopy shows that wing scales from these iridescent regions of the wings contain two gratinglike microstructures crossed at right angles. Application of the diffraction theory, as formulated by the Stratton-Silver-Chu integral, to the microstructure can explain all the important features observed experimentally.  相似文献   

15.
Ding Y  Xu S  Zhang Y  Wang AC  Wang MH  Xiu Y  Wong CP  Wang ZL 《Nanotechnology》2008,19(35):355708
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30?nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.  相似文献   

16.
We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects.  相似文献   

17.
Membrane‐based materials with special surface wettability have been applied widely for the treatment of increasing industrial oily waste water, as well as frequent oil spill accidents. However, traditional technologies are energy‐intensive and limited, either by fouling or by the inability of a single membrane to separate all types of oil–water mixtures. Herein, a biomimetic monolayer copper membrane (BMCM), composed of multiscale hierarchical dendritic structures, is cleverly designed and successfully fabricated on steel mesh substrate. It not only possesses the ability of energy‐efficient oil–water separation but also excellent self‐recovery anti‐oil‐fouling properties (<150 s). The BMCM even keeps high separation efficiency (>93%) after ten‐time cycling tests. More importantly, it retains efficient oil–water separation capacity for five different oils. In fact, these advanced features are benefited by the synergistic effect of chemical compositions and physical structures, which is inspired by the typical nonwetting strategy of butterfly wing scales. The findings in this work may inspire a facile but effective strategy for repeatable and antipollution oil–water separation, which is more suitable for various applications under practical conditions, such as wastewater treatment, fuel purification, separation of commercially relevant oily water, and so forth.  相似文献   

18.
We present a systematic study of the cuticular structure in the butterfly wing scales of some papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi, Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning and transmission electron microscopy (TEM) images, analytical modelling and computer-generated TEM micrographs, we find that the three-dimensional cuticular structures can be modelled by gyroid structures with various filling fractions and lattice parameters. We give a brief discussion of the formation of cubic gyroid membranes from the smooth endoplasmic reticulum in the scale's cell, which dry and harden to leave the cuticular structure behind when the cell dies. The scales of C. rubi are a potentially attractive biotemplate for producing three-dimensional optical photonic crystals since for these scales the cuticle-filling fraction is nearly optimal for obtaining the largest photonic band gap in a gyroid structure.  相似文献   

19.
以红珠灰蝶为生物模板,使用原子层沉积法构筑三维构型TiO_2光催化材料以增强其光捕获能力;使用种子生长法制备具有宽幅可见光波段吸收能力的等离子体共振金纳米棱结构,并将其负载于蝶翅构型TiO_2上以得到全光谱响应的复合光催化体系;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见分光光度计、X射线衍射仪(XRD)等表征了所制备的样品;对样品进行了二氧化碳还原性能测试,结果表明在全光谱照射下,负载有金纳米棱的蝶翅构型TiO_2的二氧化碳光还原性能比无结构的提升了54%。  相似文献   

20.
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号