首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium‐ion capacitors (LICs) are promising electrical energy storage systems for mid‐to‐large‐scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery‐type anode side. Herein, a high‐performance LIC by well‐defined ZnMn2O4‐graphene hybrid nanosheets anode and N‐doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg?1 at specific power of 180 W kg?1, and the specific energy remains 98 Wh kg?1 even when the specific power achieves as high as 21 kW kg?1.  相似文献   

2.
It is challenging for flexible solid‐state hybrid capacitors to achieve high‐energy‐high‐power densities in both Li‐ion and Na‐ion systems, and the kinetics discrepancy between the sluggish faradaic anode and the rapid capacitive cathode is the most critical issue needs to be addressed. To improve Li‐ion/Na‐ion diffusion kinetics, flexible oxygen‐deficient TiO2?x/CNT composite film with ultrafast electron/ion transport network is constructed as self‐supported and light‐weight anode for a quasi‐solid‐state hybrid capacitor. It is found that the designed porous yolk–shell structure endows large surface area and provides short diffusion length, the oxygen‐deficient composite film can improve electrical conductivity, and enhance ion diffusion kinetic by introducing intercalation pseudocapacitance, therefore resulting in advance electrochemical properties. It exhibits high capacity, excellent rate performance, and long cycle life when utilized as self‐supported anodes for Li‐ion and Na‐ion batteries. When assembled with activated carbon/carbon nanotube (AC/CNT) flexible cathode, using ion conducting gel polymer as the electrolyte, high energy densities of 104 and 109 Wh kg?1 are achieved at 250 W kg?1 in quasi‐solid‐state Li‐ion and Na‐ion capacitors (LICs and SICs), respectively. Still, energy densities of 32 and 36 Wh kg?1 can be maintained at high power densities of 5000 W kg?1 in LICs and SICs.  相似文献   

3.
Supercapacitors have aroused considerable attention due to their high power capability, which enables charge storage/output in minutes or even seconds. However, to achieve a high energy density in a supercapacitor has been a long‐standing challenge. Here, graphite is reported as a high‐energy alternative to the frequently used activated carbon (AC) cathode for supercapacitor application due to its unique Faradaic pseudocapacitive anion intercalation behavior. The graphite cathode manifests both higher gravimetric and volumetric energy density (498 Wh kg?1 and 431.2 Wh l?1) than an AC cathode (234 Wh kg?1 and 83.5 Wh l?1) with peak power densities of 43.6 kW kg?1 and 37.75 kW l?1. A new type of Li‐ion pseudocapacitor (LIpC) is thus proposed and demonstrated with graphite as cathode and prelithiated graphite or Li4Ti5O12 (LTO) as anode. The resultant graphite–graphite LIpCs deliver high energy densities of 167–233 Wh kg?1 at power densities of 0.22–21.0 kW kg?1 (based on active mass in both electrodes), much higher than 20–146 Wh kg?1 of AC‐derived Li‐ion capacitors and 23–67 Wh kg?1 of state‐of‐the‐art metal oxide pseudocapacitors. Excellent rate capability and cycling stability are further demonstrated for LTO‐graphite LIpCs.  相似文献   

4.
From graphene oxide wrapped iron oxide particles with etching/reduction process, high‐performance anode and cathode materials of lithium‐ion hybrid supercapacitors are obtained in the same process with different etching conditions, which consist of partially etched crumpled graphene (CG) wrapped spiky iron oxide particles (CG@SF) for a battery‐type anode, and fully etched CG for a capacitive‐type cathode. The CG is formed along the shape of spikily etched particles, resulting in high specific surface area and electrical conductivity, thus the CG‐based cathode exhibits remarkable capacitive performance of 210 F g?1 and excellent rate capabilities. The CG@SF can also be ideal anode materials owing to spiky and porous morphology of the particles and tightly attached crumpled graphene onto the spiky particles, which provides structural stability and low contact resistance during repetitive lithiation/delithiation processes. The CG@SF anode shows a particularly high capacitive performance of 1420 mAh g?1 after 270 cycles, continuously increases capacity beyond the 270th cycle, and also maintains a high capacity of 170 mAh g?1 at extremely high speeds of 100 C. The full‐cell exhibits a higher energy density up to 121 Wh kg?1 and maintains high energy density of 60.1 Wh kg?1 at 18.0 kW kg?1. This system could thus be a practical energy storage system to fill the gap between batteries and supercapacitors.  相似文献   

5.
Hybrid energy storage systems have shown great promise for many applications; however, achieving high energy and power densities with long cycle stability remains a major challenge. Here, a strategy to synthesize high‐tap density anode and cathode structures that yield ultrahigh performance in hybrid energy storage is reported. First, vinyl acetate monomers are polymerized into molecular sizes via chain reactions controlled by the surface free radicals of graphene and metals. Subsequently, molecular‐size polymers are thermally evaporated to construct battery‐type anode structures with encapsulated tin metals for high‐capacity and stratified graphene pliable pockets (GPPs) for fast charge transfer. Similarly, sulfur particles are attached to GPPs via monomeric polymerization, and capacitor‐type hollow GPP (H@GPP) cathode structures are produced by evaporating sulfur, where sublimated S particles yield mesopores for rapid anion movement and micropores for high capacity. Moreover, hybrid full‐cell devices with high‐tap density anodes and cathodes show high gravimetric energy densities of up to 206.9 Wh kg?1, exceeding those of capacitors by ≈16‐fold, and excellent volumetric energy densities of up to 92.7 Wh L?1. Additionally, they attain high power densities of up to 23 678 W kg?1, outperforming conventional devices by a factor of ≈100, and long cycle stability over 10 000 cycles.  相似文献   

6.
Hydrothermal processing followed by controlled pyrolysis of used white office paper (a globally collectable shredded paper waste) are performed to obtain high surface area carbon with hierarchical pore size distribution. The BET specific surface area of such carbon is 2341 m2 g?1. The interconnected macroporous structure along with the concurrent presence of mesopores and micropores makes the material ideal for ultracapacitor application. Such waste paper derived carbon (WPC) shows remarkable performance in all solid‐state supercapacitor fabricated with ionic liquid‐polymer gel electrolyte. At room temperature, the material exhibits a power density of 19 000 W kg?1 with an energy capability of 31 Wh kg?1. The Li‐ion electrochemical capacitor constructed using WPC as cathode also shows an excellent energy storage capacity of 61 Wh kg?1.  相似文献   

7.
Sodium‐ion capacitors (SICs) have attracted enormous attention due to their high energy density and high power density. In this work, N and S codoped hollow carbon nanobelts (N/S‐HCNs) are synthesized by a self‐templated method. The as‐synthesized carbon nanobelts exhibit excellent performance in pseudocapacitance and electric double layer anions adsorption. After pairing the N/S‐HCNs cathode with a tin foil anode in a carbonate electrolyte, the obtained SIC achieves a high specific capacity of 400 mAh g?1 at 1 A g?1 (based on the mass of cathode material) and energy density of 250.35 Wh kg?1 at 676 W kg?1 (based on the total mass of cathode and anode materials). Besides, the presented SIC also demonstrates high cycling stability with almost 100% capacity retention after 10 000 cycles, which is among the best results of the reported SICs, suggesting the potential for high‐performance energy storage applications.  相似文献   

8.
A flexible and wearable aqueous symmetrical lithium‐ion battery is developed using a single LiVPO4F material as both cathode and anode in a “water‐in‐salt” gel polymer electrolyte. The symmetric lithium‐ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li2CO3‐LiF, which enables fast Li‐ion transport. Energy densities of 141 Wh kg?1, power densities of 20 600 W kg?1, and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the “water‐in‐salt” gel polymer electrolyte.  相似文献   

9.
Silicon holds great promise as an anode material for lithium‐ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene‐encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g?1 at 5 A g?1), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g?1. A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg?1.  相似文献   

10.
Despite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈ 3860 mA h g?1, it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high‐performance LMA is needed to realize anode‐minimized Li metal batteries (LMBs). In this study, high‐performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion‐like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li‐metal storage. The HNA‐based electrodes lead to a high Li ion concentration in the nanoporous structure, showing a high CE of ≈ 99.1%, high rate capability of 12 mA cm?2, and a stable cycling behavior of more than 750 cycles. In addition, anode‐minimized LMBs are achieved using a HNA that has limited Li content ( ≈ 0.13 mg cm?2), corresponding to 6.5% of the cathode material (commercial NCM622 ( ≈ 2 mg cm?2)). The LMBs demonstrate a feasible electrochemical performance with high energy and power densities of ≈ 510 Wh kgelectrode?1 and ≈ 2760 W kgelectrode?1, respectively, for more than 100 cycles.  相似文献   

11.
Zinc‐ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long‐cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high‐rate and ultrastable flexible quasi‐solid‐state zinc‐ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn‐ion battery has a depth of discharge of ≈100% for the cathode and 66% for the anode, and delivers an impressive high‐rate of 50 C (discharge in 60 s), long‐term durability of 2000 cycles at 20 C, and unprecedented energy density ≈115 Wh kg?1, together with a peak power density ≈5.1 kW kg?1 (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high‐rate and stable properties are correlated with the 2D fast ion‐migration pathways and the introduced intercalation pseudocapacitance.  相似文献   

12.
Low‐cost, environment‐friendly aqueous Zn batteries have great potential for large‐scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H2O on Zn2+ intercalation into bilayer V2O5·nH2O is demonstrated. The results suggest that the H2O‐solvated Zn2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V2O5 framework, effectively promoting its diffusion. Benefited from the “lubricating” effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg?1 at 0.3 A g?1. Meanwhile, it can maintain an energy density of 90 Wh kg?1 at a high power density of 6.4 kW kg?1 (based on the cathode and 200% Zn anode), making it a promising candidate for high‐performance, low‐cost, safe, and environment‐friendly energy‐storage devices.  相似文献   

13.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high‐energy and high‐power energy‐storage applications. Orthorhombic Nb2O5 (T‐Nb2O5) has recently been recognized as a promising anode material for Na‐HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T‐Nb2O5‐based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na‐HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T‐Nb2O5 nanowires (denoted as Gr‐Nb2O5 composites) by plasma‐enhanced chemical vapor deposition, targeting a highly conductive anode material for Na‐HSCs. The few‐layered graphene capsules with ample topological defects would enable facile electron and Na+ ion transport, guaranteeing rapid pseudocapacitive processes at the Nb2O5/electrolyte interface. The Na‐HSC full‐cell comprising a Gr‐Nb2O5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg?1/80.1 W kg?1 and 62.2 Wh kg?1/5330 W kg?1), outperforming those of recently reported Na‐HSC counterparts. Proof‐of‐concept Na‐HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending–release cycles.  相似文献   

14.
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

15.
Sodium‐ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon‐networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well‐welded on 3D‐crosslinked carbon‐networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as‐prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm?2 at 0.25 mA cm?2) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all‐flexible sodium‐ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm?2 at 0.3 mA cm?2 and superior energy density of 144 Wh kg?1), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.  相似文献   

16.
On‐chip micro‐supercapacitors (MSCs), as promising power candidates for microdevices, typically exhibit high power density, large charge/discharge rates, and long cycling lifetimes. However, as for most reported MSCs, the unsatisfactory areal energy density (<10 µWh cm?2) still hinders their practical applications. Herein, a new‐type Zn‐ion hybrid MSC with ultrahigh areal energy density and long‐term durability is demonstrated. Benefiting from fast ion adsorption/desorption on the capacitor‐type activated‐carbon cathode and reversible Zn stripping/plating on the battery‐type electrodeposited Zn‐nanosheet anode, the fabricated Zn‐ion hybrid MSCs exhibit remarkable areal capacitance of 1297 mF cm?2 at 0.16 mA cm?2 (259.4 F g?1 at a current density of 0.05 A g?1), landmark areal energy density (115.4 µWh cm?2 at 0.16 mW cm?2), and a superb cycling stability without noticeable decay after 10 000 cycles. This work will inspire the fabrication and development of new high‐performance microenergy devices based on novel device design.  相似文献   

17.
A high capacity cathode is the key to the realization of high‐energy‐density lithium‐ion batteries. The anionic oxygen redox induced by activation of the Li2MnO3 domain has previously afforded an O3‐type layered Li‐rich material used as the cathode for lithium‐ion batteries with a notably high capacity of 250–300 mAh g?1. However, its practical application in lithium‐ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2‐type Li‐rich material with a single‐layer Li2MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g?1 (energy density: ≈1360 Wh kg?1). The activation of a single‐layer Li2MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge–discharge cycle. Understanding the high performance will further the development of high‐capacity cathode materials that utilize anionic oxygen redox processes.  相似文献   

18.
Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double‐layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li3VO4 with low Li‐ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N‐doped carbon‐encapsulated Li3VO4 nanowires are synthesized through a morphology‐inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g?1 at 0.1 A g?1, excellent rate capability, and long‐term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge‐transfer, the Li3VO4/N‐doped carbon nanowires exhibit a high‐rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li3VO4/N‐doped carbon nanowires delivers a high energy density of 136.4 Wh kg?1 at a power density of 532 W kg?1, revealing the potential for application in high‐performance and long life energy storage devices.  相似文献   

19.
Metal selenides have great potential for electrochemical energy storage, but are relatively scarce investigated. Herein, a novel hollow core‐branch CoSe2 nanoarray on carbon cloth is designed by a facile selenization reaction of predesigned CoO nanocones. And the electrochemical reaction mechanism of CoSe2 in supercapacitor is studied in detail for the first time. Compared with CoO, the hollow core‐branch CoSe2 has both larger specific surface area and higher electrical conductivity. When tested as a supercapacitor positive electrode, the CoSe2 delivers a high specific capacitance of 759.5 F g?1 at 1 mA cm?2, which is much larger than that of CoO nanocones (319.5 F g?1). In addition, the CoSe2 electrode exhibits excellent cycling stability in that a capacitance retention of 94.5% can be maintained after 5000 charge–discharge cycles at 5 mA cm?2. An asymmetric supercapacitor using the CoSe2 as cathode and an N‐doped carbon nanowall as anode is further assembled, which show a high energy density of 32.2 Wh kg?1 at a power density of 1914.7 W kg?1, and maintains 24.9 Wh kg?1 when power density increased to 7354.8 W kg?1. Moreover, the CoSe2 electrode also exhibits better oxygen evolution reaction activity than that of CoO.  相似文献   

20.
Developing high‐power cathodes is crucial to construct next‐generation quick‐charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high‐power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg?1 at the energy density of >300 Wh kg?1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li‐ion batteries. A self‐activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation‐pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high‐power energy storage devices will be inspired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号