首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Materials with an ultralow density and ultrahigh electromagnetic‐interference (EMI)‐shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT–multilayered graphene edge plane (MLGEP) core–shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X‐band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm?3, respectively, which far surpasses the best values of reported carbon‐based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT–MLGEP hybrids also exhibit a great potential as nano‐reinforcements for fabricating high‐strength polymer‐based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials.  相似文献   

2.
Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal‐to‐noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all‐carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two‐step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real‐time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all‐carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs.  相似文献   

3.
An all‐carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high‐conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel–paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all‐carbon sensors demonstrate an ultrawide detecting range (0.72 Pa–130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349–253 kPa?1) at low‐pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading–loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real‐time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real‐time health monitoring, sport performance detecting, harsh environment‐related robotics and industry, and so forth.  相似文献   

4.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

5.
Polyaniline is one of the most promising conducting polymers for gas sensing applications due to its relatively high stability and n or p type doping capability. However, the conventionally doped polyaniline still exhibits relatively high resistivity, which causes difficulty in gas sensing measurement. In this work, the effect of carbon nanotube (CNT) dispersion on CO gas sensing characteristics of polyaniline gas sensor is studied. The carbon nanotube was synthesized by Chemical Vapor Deposition (CVD) using acetylene and argon gases at 600 degrees C. The Maleic acid doped Emeradine based polyaniline was synthesized by chemical polymerization of aniline. CNT was then added and dispersed in the solution by ultrasonication and deposited on to interdigitated AI electrode by solvent casting. The sensors were tested for CO sensing at room temperature with CO concentrations in the range of 100-1000 ppm. It was found that the gas sensing characteristics of polyaniline based gas sensor were considerably improved with the inclusion of CNT in polyaniline. The sensitivity was increased and response/recovery times were reduced by more than the factor of 2. The results, therefore, suggest that the inclusion of CNT in MA-doped polyaniline is a promising method for achieving a conductive polymer gas sensor with good sensitivity, fast response, low-concentration detection and room-operating-temperature capability.  相似文献   

6.
A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler–matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene–poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa?1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from ?25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored.  相似文献   

7.
The electrical conductivity and the specific surface area of conductive fillers in conductor‐insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG‐O/CNT). We report the effect of the rG‐O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG‐O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG‐O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.  相似文献   

8.
The rapid development of touch screens as well as photoelectric sensors has stimulated the fabrication of reliable, convenient, and human‐friendly devices. Other than sensors that detect physical touch or are based on pressure sensing, proximity sensors offer controlled sensibility without physical contact. In this work we present a transparent and eco‐friendly sensor made through layer‐by‐layer spraying of modified graphene oxide filled cellulose nanocrystals on lithographic patterns of interdigitated electrodes on polymer substrates, which help to realize the precise location of approaching objects. Stable and reproducible signals generated by keeping the finger in close proximity to the sensor can be controlled by humidity, temperature, and the distance and number of sprayed layers. The chemical modification and reduction of the graphene oxide/cellulose crystal composite and its excellent nanostructure enable the development of proximity sensors with faster response and higher sensitivity, the integration of which resolves nearly all of the technological issues imposed on optoelectronic sensing devices.  相似文献   

9.
Graphene leading to high surface‐to‐volume ratio and outstanding conductivity is applied for gas molecule sensing with fully utilizing its unique transparent and flexible functionalities which cannot be expected from solid‐state gas sensors. In order to attain a fast response and rapid recovering time, the flexible sensors also require integrated flexible and transparent heaters. Here, large‐scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated. This combined all‐graphene device structure enables an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%. In particular, it is possible to classify the fast (≈14 s) and slow (≈95 s) response due to sp2‐carbon bonding and disorders on graphene and the self‐integrated graphene heater leads to the rapid recovery (≈11 s) of a 2 cm × 2 cm sized sensor with reproducible sensing cycles, including full recovery steps without significant signal degradation under exposure to NO2 gas.  相似文献   

10.
Multi-walled carbon nanotubes (MWCNTs)-polymer composite-based hybrid sensors were fabricated and integrated into a resistive sensor design for gas sensing applications. Thin films of MWCNTs were grown onto Si/SiO(2) substrates via xylene pyrolysis using the chemical vapor deposition technique. Polymers like PEDOT:PSS and polyaniline (PANI) mixed with various solvents like DMSO, DMF, 2-propanol and ethylene glycol were used to synthesize the composite films. These sensors exhibited excellent response and selectivity at room temperature when exposed to low concentrations (100 ppm) of analyte gases like NH(3) and NO(2). The effect of various solvents on the sensor response imparting selectivity to CNT-polymer nanocomposites was investigated extensively. Sensitivities as high as 28% were observed for an MWCNT-PEDOT:PSS composite sensor when exposed to 100 ppm of NH(3) and - 29.8% sensitivity for an MWCNT-PANI composite sensor to 100 ppm of NO(2) when DMSO was used as a solvent. Additionally, the sensors exhibited good reversibility.  相似文献   

11.
Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof‐of‐concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution‐processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene‐based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high‐quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom‐up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene‐based nanomaterials and their applications in sensors.  相似文献   

12.
A major difficulty in implementing carbon‐based electrode arrays with high device‐packing density is to ensure homogeneous and high sensitivities across the array. Overcoming this obstacle requires quantitative microscopic models that can accurately predict electrode sensitivity from its material structure. Such models are currently lacking. Here, it is shown that the sensitivity of graphene electrodes to dopamine and serotonin neurochemicals in fast‐scan cyclic voltammetry measurements is strongly linked to point defects, whereas it is unaffected by line defects. Using the physics of point defects in graphene, a microscopic model is introduced that explains how point defects determine sensitivity. The predictions of this model match the empirical observation that sensitivity linearly increases with the density of point defects. This model is used to guide the nanoengineering of graphene structures for optimum sensitivity. This approach achieves reproducible fabrication of miniaturized sensors with extraordinarily higher sensitivity than conventional materials. These results lay the foundation for new integrated electrochemical sensor arrays based on nanoengineered graphene.  相似文献   

13.
A facile strategy for the preparation of water-dispersible multi-walled carbon nanotubes (MWCNTs) in aqueous solution for the preparation of the three-dimensional (3D) graphene/carbon nanotube (G/CNT) hybrid architectures is proposed, where MWCNTs were functionalized by simultaneous radiation-induced graft polymerization of acrylic acid under the γ-ray (denoted as MWCNT-g-PAA) for improving its dispersibility. The stability of the aqueous solution of MWCNT-g-PAA in water is highly improved. We also use the MWCNT-g-PAA fabricating three-dimensional cylindrical graphene/carbon nanotube (G/CNT) hybrid architectures by a simple one-step hydrothermal process. We found that the as-prepared MWCNTs-g-PAA showed a very good dispersibility in GO solution with different concentration ratio and a promising precursor for preparing the graphene/CNT hybrid materials.  相似文献   

14.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.  相似文献   

15.
To improve the electrochemical performance of carbonaceous anodes for lithium ion batteries (LIBs), the incorporation of both well‐defined heteroatom species and the controllable 3D porous networks are urgently required. In this work, a novel N‐enriched carbon/carbon nanotube composite (NEC/CNT) through a chemically induced precursor‐controlled pyrolysis approach is developed. Instead of conventional N‐containing sources or precursors, Schiff‐base network (SNW‐1) enables the desirable combination of a 3D polymer with intrinsic microporosity and ultrahigh N‐content, which can significantly promote the fast transport of both Li+ and electron. Significantly, the strong interaction between carbon skeleton and nitrogen atoms enables the retention of ultrahigh N‐content up to 21 wt% in the resultant NEC/CNT, which exhibits a super‐high capacity (1050 mAh g?1) for 1000 cycles and excellent rate performance (500 mAh g?1 at a current density of 5 A g?1) as the anode material for LIBs. The NEC/CNT composite affords a new model system as well as a totally different insight for deeply understanding the relationship between chemical structures and lithium ion storage properties, in which chemistry may play a more important role than previously expected.  相似文献   

16.
Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line‐patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer. With the sliding and disconnection of the overlapped CNTs, the strain sensor performs excellently with a broad sensing range (≥145% strain), ultrahigh sensitivity (gauge factor of 42 300 at a strain of 125–145%), high repeatability, and durability. The performance of the sensor is also tunable by controlling the overlapped area of CNT bundles. Detailed mechanisms of the sensor and its applications in human motion detection are also further investigated. With the novel structure and mechanism, the sensor can detect a wide range of strains with high sensitivity, demonstrating the potential for numerous applications including wearable healthcare devices.  相似文献   

17.
For the first time nitrogen or boron doped carbon nanotubes were added into a SnO2 matrix to develop a new hybrid CNTs/SnO2 gas sensors. The hybrid sensor is utilised to detect low ppb concentrations of NO2 in air, by measuring resistance changes of thin CNTs/SnO2 films. The tests are performed at room temperature. For comparison, pure SnO2 and N or B-substituted CNT sensors are also examined. Comparative gas sensing results reveal that the CNTs/SnO2 hybrid sensors exhibit much higher response towards NO2, at least by a factor of 10, and good baseline recovery properties at room temperature than the blank SnO2 and the N or B-substituted CNT sensors. This finding shows that doping SnO2 with low quantity of CNTs doped with heteroatoms can dramatically improve sensitivity.  相似文献   

18.
Lightweight,flexible,ultrahigh-performance electromagnetic-interference (EMI) shielding materials are urgently required in the areas of aircraft/aerospace,portable and wearable electronics.Herein,1D carbon nanotubes (CNT) and carbon nanofibers (CNF) with 2D edge-rich graphene (ERG) are used to form a lightweight,flexible CNT-ERG-CNF hybrid foam.This foam was fabricated through a self-sacrificial templating chemical vapor deposition process,where nanocarbons bond through covalent bonding,forming a hierarchical 3D hybridized carbon nanostructure.Multistage conductive networks and heterogeneous interfaces were constructed using edge-rich nanocarbons to increase the induced currents and interracial polarization which makes great contributions to achieve high absorption electromagnetic shielding effectiveness (SEA).The CNT-ERG-CNF hybrid foam exhibits EMI shielding effectiveness (SE) exceeding 55.4 dB in the X-band while the specific SE (SSE,SE divided by mass density) achieves 9200 dB cm3 g-1,which surpasses that of nearly all other carbon-based composite materials.Furthermore,the structural stability and durability of the flexible CNT-ERG-CNF hybrid foams is examined by measuring EMI SE after 10000 times cyclic bending.Remarkably,this work not only provides a new idea for preparing hierarchical carbon materials for a wide range of applications,but presents some fundamental insights for achieving higher absorption losses in EMI shielding materials.  相似文献   

19.
The direct formation of C? N and C? O bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form C? N and C? O bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen‐ or oxygen‐doped RGO (N‐RGO or O‐RGO, respectively) are fabricated via the fixation between N2 or O2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g?1 for O‐RGO, N‐RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer‐by‐layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm?2 and 621 F g?1 at 10 mV s?1 for N‐RGO/N‐CNT at 1:1, v/v), high cycling stability, and structural flexibility.  相似文献   

20.
The treatment of organic wastewater is of great significance. Carbon nanotube (CNT)/graphene‐based nanomaterials have great potential as absorbent materials for organic wastewater treatment owing to their high specific surface area, mesoporous structure, tunable surface properties, and high chemical stability; these attributes allow them to endure harsh wastewater conditions, such as acidic, basic, and salty conditions at high concentrations or at high temperatures. Although a substantial amount of work has been reported on the performance of CNT/graphene‐based nanomaterials in organic wastewater systems, engineering challenges still exist for their practical application. Herein, the adsorption mechanism of CNT‐ and graphene‐based nanomaterials is summarized, including the adsorption mechanism of CNTs and graphene at the atomic and molecular levels, their hydrophilic and hydrophobic surface properties, and the structure–property relationship required for adsorption to occur. Second, the structural modification and recombination methods of CNT‐ and graphene‐based adsorbents for various organic wastewater systems are introduced. Third, the engineering challenges, including the molding of macroscopically stable adsorbents, adsorption isotherm models and adsorption kinetic behaviors, and reversible adsorption performance compared to that of activated carbon (AC) are discussed. Finally, cost issues are discussed in light of scalable and practical application of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号