首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

2.
In this work, a DNA inter‐strand replacement strategy for therapeutic activity is successfully designed for multimodal therapy. In this multimodal therapy, chlorin e6 (Ce6) photosensitizer molecules are used for photodynamic therapy (PDT), while aptamer‐AuNRs, are used for selective binding to target cancer cells and for photothermal therapy (PTT) with near infrared laser irradiation. Aptamer Sgc8, which specifically targets leukemia T cells, is conjugated to an AuNR by a thiol‐Au covalent bond and then hybridized with a Ce6‐labeled photosensitizer/reporter to form a DNA double helix. When target cancer cells are absent, Ce6 is quenched and shows no PDT effect. However, when target cancer cells are present, the aptamer changes structure to release Ce6 to produce singlet oxygen for PDT upon light irradiation. Importantly, by combining photosensitizer and photothermal agents, PTT/PDT dual therapy supplies a more effective therapeutic outcome than either therapeutic modality alone.  相似文献   

3.
Photoconversion tunability of fluorophore dye is of great interest in cancer nanomedicine such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, this paper reports wavelength‐dependent photoconversional polymeric vesicles of boron dipyrromethene (Bodipy) fluorophore for either PDT under 660 nm irradiation or PTT under 785 nm irradiation. After being assembled within polymeric vesicles at a high drug loading, Bodipy molecules aggregate in the conformations of both J‐type and H‐type, thereby causing red‐shifted absorption into near‐infrared region, ultralow radiative transition, and ideal resistance to photobleaching. Such vesicles further possess enhanced blood circulation, preferable tumor accumulation, as well as superior cell uptake as compared to free Bodipy. In particular, the vesicles mainly generate abundant intracellular singlet oxygen for PDT treatment under 660 nm irradiation, while they primarily produce a potent hyperthermia for PTT with tumor ablation through singlet oxygen‐synergized photothermal necrosis under 785 nm irradiation. This approach provides a facile and general strategy to tune photoconversion characteristics of fluorophore dyes for wavelength‐dependent photoinduced cancer therapy.  相似文献   

4.
As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+)‐organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image‐guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.  相似文献   

5.
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR‐excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR‐808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)‐functionalized silica layer is developed for PDT agent. The two booster effectors (dye‐sensitization and core–shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.  相似文献   

6.
It is highly desired that satisfactory photoactive agents with ideal photophysical characteristics are explored for potent cancer phototherapeutics. Herein, bifunctional nanoparticles of low‐bandgap donor–acceptor (D–A)‐type conjugated‐polymer nanoparticles (CP‐NPs) are developed to afford a highly efficient singlet‐to‐triplet transition and photothermal conversion for near‐infrared (NIR) light‐induced photodynamic (PDT)/photothermal (PTT) treatment. CP‐NPs display remarkable NIR absorption with the peak at 782 nm, and perfect resistance to photobleaching. Photoexcited CP‐NPs undergo singlet‐to‐triplet intersystem crossing through charge transfer in the excited D–A system and simultaneous nonradiative decay from the electron‐deficient electron acceptor isoindigo derivative under single‐wavelength NIR light irradiation, leading to distinct singlet oxygen quantum yield and high photothermal conversion efficiency. Moreover, the CP‐NPs display effective cellular uptake and cytoplasmic translocation from lysosomes, as well as effective tumor accumulation, thus promoting severe light‐triggered damage caused by favorable reactive oxygen species (ROS) generation and potent hyperthermia. Thus, CP‐NPs achieve photoactive cell damage through their photoconversion ability for synergistic PDT/PTT treatment with tumor ablation. The proof‐of‐concept design of D–A‐type conjugated‐polymer nanoparticles with ideal photophysical characteristics provides a general approach to afford potent photoactive cancer therapy.  相似文献   

7.
Simultaneous photodynamic therapy (PDT) and photothermal therapy (PTT) can reduce the risks of drug leakage, body burden, and preparation complexity in traditional combination PDT/PTT. Here, a versatile nanoporphyrin (Pp18-lipos) self-assembled from lipid–purpurin 18 conjugates (Pp18-lipids) and pure lipids is presented. The as-prepared Pp18-lipos with 2 mol% Pp18-lipids can perform effective PDT and fluorescence imaging. The Pp18-lipos with 65 mol% Pp18 can perform potent PTT and photoacoustic imaging. The chelation of Mn2+ endows the Pp18-lipids-Mn2+ a high T1-weighted magnetic resonance imaging contrast. Notably, pretreatment of low-dose PDT facilitates the endocytosis and tumor accumulation of Pp18-lipos, thus achieving synergistic PDT/PTT. Upon exposure to a single 705 nm-laser, the combination of PDT/PTT achieves a significantly higher tumor growth inhibition rate than PDT or PTT alone. In addition, it is found that the synergistic PDT/PTT triggers more potent anti-tumor immune response including tumor infiltration of immune cells and release of related cytokines.  相似文献   

8.
Various organic nanoagents have been developed for photothermal therapy (PTT) and photodynamic therapy (PDT) under near‐infrared (NIR) irradiation. Among them, small molecule‐based nanoagents are very attractive due to their advantages of well‐defined chemical structures, high purity, good reproducibility, and easy processability. However, only a few small molecule‐based nanoagents have been developed for PDT under NIR irradiation. Moreover, the mechanism of PDT under NIR is still elusive. Herein, a semiconducting small molecule (BTA) with donor–acceptor–donor structure and twisted conformation is developed for PDT/PTT under NIR irradiation. A large π‐conjugated electron‐deficient unit is used as the core to couple with two electron‐donating units, ensuring the strong absorption under 808 nm. Moreover, the donor–acceptor structures and twisted conformation can reduce the energy gap between the singlet and triplet states (?EST) to afford effective intersystem crossing, beneficial for reactive oxygen species generation. The mechanism is probed by experimental and theoretical evidence. Moreover, the BTA nanoparticles exhibit excellent biocompatibility and PTT/PDT in vitro performance under NIR irradiation. This provides a strategy for designing highly efficient PDT/PTT molecular materials.  相似文献   

9.
实体肿瘤的缺氧严重影响着基于氧气的光动力疗法(PDT)的效果.另外,单一治疗模式通常难以达到满意的治疗效果.为此,我们设计合成了一种多功能纳米复合材料Pt-Ce6用于克服肿瘤乏氧,实现PDT/PTT协同治疗.在该体系中,我们使用多孔Pt纳米粒子作为过氧化氢纳米酶、近红外二区(NIR-Ⅱ)光热转换剂和光敏剂二氢卟吩e6(...  相似文献   

10.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

11.
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual‐modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria‐targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria‐targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy.  相似文献   

12.
Synergistic phototherapy has the potential to conquer the extreme heterogeneity and complexity of difficult tumors and result in better cancer treatment outcomes than monomodal photodynamic therapy (PDT) or photothermal therapy (PTT). However, the previous approaches to combining PDT and PTT are mainly focused on primary tumor obliteration while neglecting tumor metastasis, which is responsible for about 90% of cancer deaths. It is shown that a combined PDT/PTT approach, based on upconversion‐polymer hybrid nanoparticles with surface‐loaded chlorin e6 photosensitizer, can enhance primary tumor elimination and elicit antitumor immunity against disseminated tumors. The specifical arrangement of an external upconversion coating over the polymer core ensures adequate photoabsorption by the upconversion nanoparticles for the generation of reactive oxygen species upon single near‐infrared light irradiation. Furthermore, it is found that synergistic phototherapy can elicit robust systemic and humoral antitumor immune responses. When combined with immune checkpoint blockades, it can inhibit tumor relapse and metastasis as well as prolong the survival of tumor‐bearing mice in two types of tumor metastasis models. This study may establish a new modality for enhancing immunogenic cell death through a synergistic phototherapeutic nanoplatform and extend this strategy to overcome tumor metastasis with an augmented antitumor immune response.  相似文献   

13.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

14.
Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of treatment for tumors. Herein, a new aggregation‐induced emission (AIE)gen (MeO‐TPE‐indo, MTi) is synthesized with a D–π–A conjugated structure. MTi, which has an electron donor and an acceptor on a tetraphenylethene (TPE) conjugated skeleton, can induce the effective generation of reactive oxygen species (ROS) for PDT. With the guide of the indolium group, MTi can target and image mitochondrion selectively. In order to get good dispersion in water and long‐time retention in tumors, MTi is modified on the surface of polydopamine nanoparticles (PDA NPs) to form the nanocomposite (PDA‐MeO‐TPE‐indo, PMTi ) by π–π and hydrogen interactions. PMTi is a nanoscale composite for imaging‐guided PDT and PTT in tumor treatment, which is constructed with AIEgens and PDA for the first time. The organic functional molecules are combined with nanomaterials for building a multifunctional diagnosis and treatment platform by utilizing the advantages of both sides.  相似文献   

15.
Chlorin e6-pHLIPss-AuNRs, a gold nanorod-photosensitizer conjugate containing a pH (low) insertion peptide (pHLIP) with a disulfide bond which imparts extracellular pH (pHe)-driven tumor targeting ability, has been successfully developed for bimodal photodynamic and photothermal therapy. In this bimodal therapy, chlorin e6 (Ce6), a second-generation photosensitizer (PS), is used for photodynamic therapy (PDT). Gold nanorods (AuNRs) are used as a hyperthermia agent for photothermal therapy (PTT) and also as a nanocarrier and quencher of Ce6. pHLIPss is designed as a pile-driven targeting probe to enhance accumulation of Ce6 and AuNRs in cancer cells at low pH. In Ce6- pHLIPss-AuNRs, Ce6 is close to and quenched by AuNRs, causing little PDT effect. When exposed to normal physiological pH 7.4, Ce6-pHLIPs~-AuNRs loosely associate with the cell membrane. However, once exposed to acidic pH 6.2, pHLIP actively inserts into the cell membrane, and the conjugates are translocated into cells. When this occurs, Ce6 separates from the AuNRs as a result of disulfide bond cleavage caused by intracellular glutathione (GSH), and singlet oxygen is produced for PDT upon light irradiation. In addition, as individual PTT agent, AuNRs can enhance the accumulation of PSs in the tumor by the enhanced permeation and retention (EPR) effect. Therefore, as indicated by our data, when exposed to acidic pH, Ce6-pHLIPss-AuNRs can achieve synergistic PTT/PDT bimodality for cancer treatment.  相似文献   

16.
Controlled drug release systems can enhance the safety and availability but avoid the side effect of drugs. Herein, the concept of DNA complementary base pairing rules in biology is used to design and prepare a photothermal‐triggered drug release system. Adenine (A) modified polydopamine nanoparticles (A‐PDA, photothermal reagent) can effectively bind with thymine (T) modified Zinc phthalocyanine (T‐ZnPc, photosensitizer) forming A‐PDA = T‐ZnPc (PATP) complex based on A = T complementary base pairing rules. Similar to DNA, whose base pairing in double strands will break by heating, T‐ZnPc can be effectively released from A‐PDA after near infrared irradiation–triggered light‐thermal conversion to obtain satisfactory photodynamic–photothermal synergistic tumor treatment. In addition, PDA can carry abundant Gd3+ to provide magnetic resonance imaging guided delivery and theranostic function.  相似文献   

17.
Malignant melanoma is a highly aggressive tumor resistant to chemotherapy. Therefore, the development of new highly effective therapeutic agents for the treatment of malignant melanoma is highly desirable. In this study, a new class of polymeric photothermal agents based on poly(N‐phenylglycine) (PNPG) suitable for use in near‐infrared (NIR) phototherapy of malignant melanoma is designed and developed. PNPG is obtained via polymerization of N‐phenylglycine (NPG). Carboxylate functionality of NPG allows building multifunctional systems using covalent bonding. This approach avoids complicated issues typically associated with preparation of polymeric photothermal agents. Moreover, PNPG skeleton exhibits pH‐responsive NIR absorption and an ability to generate reactive oxygen species, which makes its derivatives attractive photothermal therapy (PTT)/photodynamic therapy (PDT) dual‐modal agents with pH‐responsive features. PNPG is modified using hyaluronic acid (HA) and polyethylene glycol diamine (PEG‐diamine) acting as the coupling agent. The resultant HA‐modified PNPG (PNPG‐PEG‐HA) shows negligible cytotoxicity and effectively targets CD44‐overexpressing cancer cells. Furthermore, the results of in vitro and in vivo experiments reveal that PNPG‐PEG‐HA selectively kills B16 cells and suppresses malignant melanoma tumor growth upon exposure to NIR light (808 nm), indicating that PNPG‐PEG‐HA can serve as a very promising nanoplatform for targeted dual‐modality PTT/PDT of melanoma.  相似文献   

18.
A new synergistic treatment that combines photothermal therapy (PTT) and inflammation‐mediated active targeting (IMAT) chemotherapy based on cytopharmaceuticals is developed. During PTT, the photothermal tumor ablation is accompanied by an inflammatory effect and upregulation of inflammatory factors at the tumor site, which may accelerate tumor regeneration. Moreover, PTT‐induced inflammation can also recruit neutrophils (NEs) to the tumor site. To convert the disadvantages of PTT‐induced inflammation into strengths, NEs are investigated as cytopharmaceuticals for IMAT chemotherapy to further inhibit the tumor recurrence after PTT due to the chemotaxis of NEs to the inflammatory sites. In this study, PEGylated gold nanorods (PEG‐GNRs) are explored as the photothermal agent and paclitaxel‐loaded cytopharmaceuticals of NEs as the IMAT chemotherapeutic agent. PTT is conducted at 72 h postinjection of PEG‐GNRs, followed by cytopharmaceuticals for IMAT chemotherapy. It is demonstrated that the cytopharmaceuticals effectively accumulate in the tumor sites after PTT, which leads to a significant enhancement of antitumor efficacy and a reduction in systemic toxicity. These studies suggest that PTT‐induced inflammation further enhances the chemotherapy of cytopharmaceuticals, and the combination of PTT and IMAT chemotherapy may be a promising synergistic strategy for targeted cancer therapy.  相似文献   

19.
This study reports a double‐targeting “nanofirework” for tumor‐ignited imaging to guide effective tumor‐depth photothermal therapy (PTT). Typically, ≈30 nm upconversion nanoparticles (UCNP) are enveloped with a hybrid corona composed of ≈4 nm CuS tethered hyaluronic acid (CuS‐HA). The HA corona provides active tumor‐targeted functionality together with excellent stability and improved biocompatibility. The dimension of UCNP@CuS‐HA is specifically set within the optimal size window for passive tumor‐targeting effect, demonstrating significant contributions to both the in vivo prolonged circulation duration and the enhanced size‐dependent tumor accumulation compared with ultrasmall CuS nanoparticles. The tumors featuring hyaluronidase (HAase) overexpression could induce the escape of CuS away from UCNP@CuS‐HA due to HAase‐catalyzed HA degradation, in turn activating the recovery of initially CuS‐quenched luminescence of UCNP and also driving the tumor‐depth infiltration of ultrasmall CuS for effective PTT. This in vivo transition has proven to be highly dependent on tumor occurrence like a tumor‐ignited explosible firework. Together with the double‐targeting functionality, the pathology‐selective tumor ignition permits precise tumor detection and imaging‐guided spatiotemporal control over PTT operation, leading to complete tumor ablation under near infrared (NIR) irradiation. This study offers a new paradigm of utilizing pathological characteristics to design nanotheranostics for precise detection and personalized therapy of tumors.  相似文献   

20.
Activatable theranostic agents that can be activated by tumor microenvironment possess higher specificity and sensitivity. Here, activatable nanozyme‐mediated 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) loaded ABTS@MIL‐100/poly(vinylpyrrolidine) (AMP) nanoreactors (NRs) are developed for imaging‐guided combined tumor therapy. The as‐constructed AMP NRs can be specifically activated by the tumor microenvironment through a nanozyme‐mediated “two‐step rocket‐launching‐like” process to turn on its photoacoustic imaging signal and photothermal therapy (PTT) function. In addition, simultaneously producing hydroxyl radicals in response to the high H2O2 level of the tumor microenvironment and disrupting intracellular glutathione (GSH) endows the AMP NRs with the ability of enhanced chemodynamic therapy (ECDT), thereby leading to more efficient therapeutic outcome in combination with tumor‐triggered PTT. More importantly, the H2O2‐activated and acid‐enhanced properties enable the AMP NRs to be specific to tumors, leaving the normal tissues unharmed. These remarkable features of AMP NRs may open a new avenue to explore nanozyme‐involved nanoreactors for intelligent, accurate, and noninvasive cancer theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号