首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study has been achieved on industrial products (glassfibres coated with different sizings). Contact angle measurements and contact angle hysteresis were obtained with three liquids (glycerol, tricresylphosphate and mineral oil). Fibres are perfectly wetted with tricresylphosphate and mineral oil contrary to glycerol. For this last liquid a large distribution of contact angle and contact angle hysteresis were observed. Three parameters were used to analyse the results: places where filaments were extracted in the roving (inside or at the periphery), roughness and heterogeneity of the filaments surfaces (chemical heterogeneity). Statistical measurements of contact angles have shown heterogeneity in the roving. Atomic force microscopy (AFM) measurements have shown that roughness has only a weak contribution to the large distribution observed on the wetting results with glycerol. This large distribution and the contact angle hysteresis were due to the chemical heterogeneity of the fibres' surfaces.  相似文献   

2.
采用简单溶剂/非溶剂法制备出超疏水性聚丙烯薄膜。该薄膜表面与水的接触角为160°,滚动角小于4°。pH值为1~14的水溶液在其表面都有很高的接触角。通过对表面进行扫描电子显微镜分析可知,薄膜具有类鸟巢状多孔微纳米复合微观结构,这种结构可捕获空气,形成水与基底之间的气垫,对表面超疏水性的产生起到了关键的作用。用Cassi...  相似文献   

3.
The complete wetting of rough surfaces is only poorly understood, since the underlying phenomena can neither be described by the Cassie‐Baxter nor the Wenzel equation. An experimental accessiblility by the sessile drop method is also very limited. The term “superhydrophilicity” was an attempt to understand the wetting of rough surfaces, but a clear definition is still forthcoming, mainly because non‐superhydrophilic surfaces can also display a contact angle of zero. Since the Wilhelmy balance is based on force measurements, it offers a technology for obtaining signals during the whole wetting process. We have obtained evidence that additional forces occur during the complete wetting of rough surfaces and that mathematically contact angles for a hydrophilicity beyond the contact angle of zero can be defined by imaginary numbers. A hydrophilized TPS‐surface obtained by chemical wettability switching from a superhydrophobic surface has been previously characterized by dynamic imaginary contact angles of 20i°–21i° and near‐zero hysteresis. Here an extremely high wetting rate is demonstrated reaching a virtual imaginary contact angle of ΘV,Adv > 3.5i° in less than 210 ms. For a rough surface displaying imaginary contact angles and extremely high wetting rates we suggest the term hyperhydrophilicity. Although, as will be shown, the physical basis of imaginary contact angles is still unclear, they significantly expand our methodology, the range of wettability measurements and the tools for analyzing rough hydrophilic surfaces. They may also form the basis for a new generation of rationally constructed medicinal surfaces.  相似文献   

4.
Developing a superhydrophobic oleophobic material is achieved by two criteria: low surface energy and properly designed surface morphology. The relationships among surface tensions, contact angles, contact angle hystereses, roll-off angles, and surface morphologies of such materials are studied. Numerical formulae related to the surface energy of liquids and solids are used to predict the wetting behavior of superhydrophobic and oleophobic materials. Using chemical and geometrical modifications, a superhydrophobic oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect of the contact angle hysteresis on the roll-off angle is described to understand the motion of a droplet when the droplet begins to roll off.  相似文献   

5.
Inspired by the hierarchical structure of the mastoid on the micrometer and nanometer scale and the waxy crystals of the mastoid on natural lotus surfaces, a facile one‐step hydrothermal strategy is developed to coat flower‐like hierarchical TiO2 micro/nanoparticles onto cotton fabric substrates (TiO2@Cotton). Furthermore, robust superhydrophobic TiO2@Cotton surfaces are constructed by the combination of hierarchical structure creation and low surface energy material modification, which allows versatility for self‐cleaning, laundering durability, and oil/water separation. Compared with hydrophobic cotton fabric, the TiO2@Cotton exhibits a superior antiwetting and self‐cleaning property with a contact angle (CA) lager than 160° and a sliding angle lower than 5°. The superhydrophobic TiO2@Cotton shows excellent laundering durability against mechanical abrasion without an apparent reduction of the water contact angle. Moreover, the micro/nanoscale hierarchical structured cotton fabrics with special wettability are demonstrated to selectively collect oil from oil/water mixtures efficiently under various conditions (e.g., floating oil layer or underwater oil droplet or even oil/water mixtures). In addition, it is expected that this facile strategy can be widely used to construct multifunctional fabrics with excellent self‐cleaning, laundering durability, and oil/water separation. The work would also be helpful to design and develop new underwater superoleophobic/superoleophilic materials and microfluidic management devices.  相似文献   

6.
采用简便的相分离法制备出超疏水PP/TiO2复合薄膜。该复合薄膜表面与水的接触角为169°,滚动角小于4°。pH值为1~14的水溶液在其表面都具有很高的接触角,均大于160°。对其表面进行扫描电子显微镜分析可知,该薄膜具有类花瓣二元微纳米复合微观结构,这种结构可捕获空气,形成水与基底之间的气垫,对表面超疏水性的产生起到了关键作用。用Cassie理论对其表面超疏水进行分析,结果表明,约2.7%的面积是水滴和基体接触,而有约97.3%的面积是水滴和空气接触。  相似文献   

7.
N. Gao  Y.Y. Yan  X.Y. Chen  D.J. Mee 《Materials Letters》2011,65(19-20):2902-2905
The physics related to superhydrophobic surfaces has been investigated with attention of its potential applications in a variety of industrial and research fields. In the present study, we report a facile method for preparing superhydrophobic surfaces based on micro and nano scaled structures. Composite thin films are formed by using SiO2 nanoparticles and poly(dimethylsiloxane) (PDMS). The static contact angle, advancing contact angle, and receding contact angle are measured to investigate the surfaces' water repelling property. The formed SiO2-PDMS composite films, with different nanoparticle concentrations and sizes, can render the surfaces with superhydrophobicicty, exhibiting large contact angles and small contact angle hysteresis. The composite films are observed by using the Scanning Electron Microscope (SEM). It is demonstrated that the hierarchical structure in micro and nano scale on the surface, plays an important role in prompting the superhydrophobic (water-repelling) properties. Wetting phenomena and related theories are also discussed within the paper.  相似文献   

8.
In this paper, we have comparatively investigated the stability of superhydrophobic behaviors of fresh and biomimetic lotus leaf surfaces under controlled water condensation conditions. The binary micro/nano structures of the superhydrophobic surfaces are observed with electron micrographs. Contact and sliding angles are evaluated by syringing water droplets on the substrates with surface temperatures and humidity precisely controlled between -10 and 30 °C, and RH = 10, 30, 60, and 90%. According to the calculations on the solid-liquid contact area fraction in different environmental conditions based on a micro/nano binary structure model, the effects of condensed water on superhydrophobic surfaces are assessed quantitatively. Both the calculated and experimental results indicate that the temperature difference between surface temperature and the dew point during measurement is essential to the occurrence of water condensation while the effect of condensation on the surface wettability also depends on the topology of hierarchical structured surfaces. The loss of water repellency that usually appears on the artificial superhydrophobic surface under low temperature and high humidity conditions is proved to be reversible, showing a bidirectional transition of the equilibrium state between Wenzel and Cassie-Baxter.  相似文献   

9.
Super‐hydrophobic surfaces, with a water contact angle (CA) greater than 150°, have attracted much interest for both fundamental research and practical applications. Recent studies on lotus and rice leaves reveal that a super‐hydrophobic surface with both a large CA and small sliding angle (α) needs the cooperation of micro‐ and nanostructures, and the arrangement of the microstructures on this surface can influence the way a water droplet tends to move. These results from the natural world provide a guide for constructing artificial super‐hydrophobic surfaces and designing surfaces with controllable wettability. Accordingly, super‐hydrophobic surfaces of polymer nanofibers and differently patterned aligned carbon nanotube (ACNT) films have been fabricated.  相似文献   

10.
Bioinspired elastomeric fibrillar surfaces have significant potential as reversible dry adhesives, but their adhesion performance is sensitive to the presence of liquids at the contact interface. Like their models in nature, many artificial mimics can effectively repel water, but fail when low-surface-tension liquids are introduced at the contact interface. A bioinspired fibrillar adhesive surface that is liquid-superrepellent even toward ultralow-surface-tension liquids while retaining its adhesive properties is proposed herein. This surface combines the effective adhesion principle of mushroom-shaped fibrillar arrays with liquid repellency based on double re-entrant fibril tip geometry. The adhesion performance of the proposed microfibril structures is retained even when low-surface-tension liquids are added to the contact interface. The extreme liquid repellency enables real-world applications of fibrillar adhesives for surfaces covered with water, oil, and other liquids. Moreover, fully elastomeric liquid-superrepellent surfaces are mechanically not brittle, highly robust against physical contact, and highly deformable and stretchable, which can increase the real-world uses of such antiwetting surfaces.  相似文献   

11.
Adhesive or repulsive forces contributed by both meniscus and viscous forces can be significant and become one of the main reliability issues when the contacting surfaces are ultra smooth, and the normal load is small, as is common for micro/nano devices. In this study, both meniscus and viscous forces during separation for smooth and rough hydrophilic and hydrophobic surfaces are studied. The effects of separation distance, initial meniscus height, separation time, contact angle and roughness are presented. Meniscus force decreases with an increase of separation distance, whereas the viscous force has an opposite trend. Both forces decrease with an increase of initial meniscus height. An increase of separation time, initial meniscus height or a decrease of contact angle leads to an increase of critical meniscus area at which both forces are equivalent. An increase in contact angle leads to a decrease of attractive meniscus force but an increase of repulsive meniscus force (attractive or repulsive dependent on hydrophilic or hydrophobic surface, respectively). Contact angle has a limited effect on the viscous force. For asymmetric contact angles, the magnitude of the meniscus force and the critical meniscus area are in between the values for the two angles. An increase in the number of surface asperities (roughness) leads to an increase of meniscus force; however, its effect on viscous force is trivial. A slightly attractive force is observed for the hydrophobic surface during the end stage of separation though the magnitude is small. The study provides a fundamental understanding of the physics of the separation process and it can be useful for control of the forces in nanotechnology applications.  相似文献   

12.
H. Wang  R. Wei 《Thin solid films》2009,518(5):1571-9828
Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is used to produce micro/nano-textured surfaces on stainless steel substrates at low temperatures for altering the wetting property of the substrates. The micro/nano-textured surfaces were characterized using scanning electron microscopy, X-ray spectroscopy, and X-ray diffraction. The wetting properties of the textured surfaces were characterized by water contact angle measurements. It was found that AIC of a-Si changes the apparent contact angles of stainless steel substrates from 90° to about 0°, measured 0.5 s after a water droplet drops on the surfaces. The study also shows that a superhydrophilic textured surface can be converted to a highly hydrophobic surface with an apparent contact angle of 145° by coating the surface with a layer of octadecyltrichlorosilane.  相似文献   

13.
Cai S  Bhushan B 《Nanotechnology》2007,18(46):465704
Menisci form between two solid surfaces with the presence of an ultra-thin liquid film. Meniscus and viscous forces contribute to an adhesive force when two surfaces are separated. The adhesive force can be very large and can result in high friction, stiction and possibly high wear. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small, as is common for micro-/nanodevices. In this study, equations for meniscus and viscous forces during separation of two flat surfaces, and a sphere and a flat surface, are developed, and the corresponding adhesive forces contributed by these two types of forces are examined. The geometric meniscus curvatures and break point are theoretically determined, and the role of meniscus and viscous forces is evaluated during separation. The influence of separation distance, liquid thickness, meniscus area, separation time, liquid properties and contact angles are analyzed. Critical meniscus areas at which transition in the dominance of meniscus to viscous forces occurs for different given conditions, i.e.?various initial liquid thicknesses, contact angles and designated separation time, are identified. The analysis provides a fundamental understanding of the physics of separation process, and insights into the relationships between meniscus and viscous forces. It is also valuable for the design of the interface for various devices.  相似文献   

14.
Noble metals are required for sliding low voltage low current electrical contacts such as those in electronic connectors, instrument slip rings and switches. This is to ensure that the contact resistance will be low and will remain stable. Gold, palladium and their alloys are the most commonly used materials and are employed primarily as electrodeposits and clad coatings.The major contact wear processes are adhesion, abrasion and fretting. Adhesive wear can operate in mild or severe regimes. Prow formation is the dominant wear process in the severe regime and is characterized by transfer from the member with the larger surface involved in sliding to that with the smaller surface, after which loose debris is formed. On repeat-pass movement, a transition to rider wear occurs in which the direction of metal transfer reverses. Unique gold electrodeposits have been developed that are relatively resistant to severe adhesive wear. These deposits are brittle, which lowers the tendency of adherent asperities at the mating surfaces to grow to large prows during sliding.Abrasive wear, in contrast, is accentuated when the coatings have low ductility, but as with other wear processes may be controlled if the contact materials are hard.Fretting wear of noble metal coatings leads to high contact resistance when they wear through to their base substrates. Frictional polymerization is the formation on the contact of insulating organic layers, which originate in organic air pollutants in the environment, and occurs during sliding and fretting of platinum group metals. Hard substrates and underplates are desirable because they reduce adhesive, abrasive and fretting wear. Smooth surfaces are superior to rough surfaces when adhesive and abrasive wear occur.  相似文献   

15.
Herein, a mushroom‐like reentrant structure is proposed, inspired by springtails, to create a selective liquid sliding surface by implementing a simple yet sturdy silicon fabrication and lithography method. The fabricated arrays display high structural fidelity, presenting a novel geometry of a concave tip. The mushroom‐like head shape of these structures is found to have superomniphobicity, which is independent of a variation of temperatures for even low surface tension liquids such as mineral oil. A design rule for the novel cap of the proposed structures, which results in a selective liquid sliding property with deionized (DI) water and mineral oil, is also investigated. It is demonstrated that oil starts to slide at a roll‐off angle (ROA) 10° and then DI water rolls off at ROA 15° on the same fabricated transparent and flexible surface with repeatable durability.  相似文献   

16.
The shape and motion of drops on surfaces is governed by the balance between the driving and the pinning forces. Here we demonstrate control over the motion of droplets on an inclined surface by exerting control over the contact angle hysteresis. The external modulation of contact angle hysteresis is achieved through a voltage-induced local molecular reorganization within the surface film at the solid-liquid interface. We show that tuning contact angle hysteresis alone is sufficient to direct and deform drops when subjected to a constant external driving force, here gravity, in the absence of a pre-defined surface energy gradient or pattern. We also show that the observed stretching and contraction of the drops mimic the motion of an inchworm. Such reversible manipulation of the pinning forces could be an attractive means to direct drops, especially with the dominance of surface forces at micro-/nanoscale.  相似文献   

17.
Adhesion due to the formation of meniscus bridges has been of interest since the early 20th century. Extensive studies have been carried out analytically and numerically. Adhesive or repulsive forces contributed by meniscus and adhesive viscous forces can be significant and become one of the main reliability issues when the contacting surfaces are smooth and/or when the normal load is small, as is common for micro/nanodevices. Previous numerical studies mainly focus on static meniscus analysis for hydrophilic surfaces. More recently, analysis of meniscus and viscous forces during separation of both hydrophilic and hydrophobic surfaces with symmetric and asymmetric contact angles have been carried out. These studies are useful to understand the relative roles of meniscus and viscous forces during the separation process. In this paper, a comprehensive review of analytical and numerical modeling of the meniscus and viscous forces are presented. The analyses for both forces during normal and tangential separation of hydrophilic and hydrophobic smooth or rough surfaces with symmetric and asymmetric contact angles, and viscous forces during tangential separation are presented. The analyses provide a fundamental understanding of the physics of the separation process and insight into the relationships between meniscus and viscous forces. Implications of these analyses in macro/micro/nanotechnologies are discussed.  相似文献   

18.
Low roll‐off angle, high impalement pressure, and mechanical robustness are key requirements for super‐liquid‐repellent surfaces to realize their potential in applications ranging from gas exchange membranes to protective and self‐cleaning materials. Achieving these properties is still a challenge with superamphiphobic surfaces, which can repel both water and low‐surface‐tension liquids. In addition, fabrication procedures of superamphiphobic surfaces are typically slow and expensive. Here, by making use of liquid flame spray, a silicon dioxide–titanium dioxide nanostructured coating is fabricated at a high velocity up to 0.8 m s?1. After fluorosilanization, the coating is superamphiphobic with excellent transparency and an extremely low roll‐off angle; 10 µL drops of n‐hexadecane roll off the surface at inclination angles even below 1°. Falling drops bounce off when impacting from a height of 50 cm, demonstrating the high impalement pressure of the coating. The extraordinary properties are due to a pronounced hierarchical nanotexture of the coating.  相似文献   

19.
电刷镀-激光加工法制备耦合结构及复合特性研究   总被引:1,自引:0,他引:1  
通过电刷镀-激光加工法在铝合金表面制备出特殊的复合结构,获得具有低黏附、耐腐蚀特性的超疏水表面,其对水的静态接触角达到155.1°,滚动角小于5.6°。利用扫描电子显微镜(SEM)、光学显微镜、接触角测量仪(OCA15Pro)和X射线衍射仪(XRD)表征表面的形貌结构、润湿特性和物相组成,并通过腐蚀性实验对表面的耐腐蚀性能进行研究。结果表明:制备表面是一种带有孔洞的沟槽与菜花状的凸包簇形成的复合结构,并且各凹槽与凸包结构均为定尺寸分布。电刷镀处理使表面物相组成相对于基体表面发生明显变化,进一步的激光加工使峰值强度增强,材料组织发生细化现象;耦合方法所制备表面的耐腐蚀性也得到改善。  相似文献   

20.
Applying advanced nanolithography techniques, various arrays of nanopillars on top of Si‐wafers are fabricated with all geometric parameters on the nanoscale. Additional chemical functionalization together with control over areal pillar density, height, and diameter allows the preparation of superhydrophobic surfaces exhibiting a wide range of contact angles (CA). Further improvement of this approach enables the production of step‐like wettability contrasts involving various CB–CB (Cassie‐Baxter) and CB–S (Smooth substrate)‐transitions. Such samples in combination with a high‐speed camera allow studying under optimized conditions quantitatively additional driving forces acting on a water droplet due to CA gradients. Experimentally it turns out that the maximum driving force on the droplet is well predicted by a simple model assuming circularly‐shaped base lines during the passage of a step‐like gradient of wettability. The provided study permits a comparison between maximum retention forces when tilting the substrate up to a critical angle and the presently determines maximum driving forces acting on a droplet due to a step‐like CA gradient. Both situations can be nicely described by a joint linear relation between normalized forces and CA hysteresis values with a slope close to theoretical values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号